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Abstract
There has recently been a surge of interest in relational database mining that aims to discover useful patterns across multiple inter-

linked database relations. It is crucial for a learning algorithm to explore the multiple inter-connected relations so that important

attributes are not excluded when mining such relational repositories. However, from a data privacy perspective, it becomes difficult to

identify all possible relationships between attributes from the different relations, considering a complex database schema. That is,

seemingly harmless attributes may be linked to confidential information, leading to data leaks when building a model. Thus, we are at

risk of disclosing unwanted knowledge when publishing the results of a data mining exercise. For instance, consider a financial data-

base classification task to determine whether a loan is considered high risk. Suppose that we are aware that the database contains

another confidential attribute, such as income level, that should not be divulged. One may thus choose to eliminate, or distort, the

income level from the database to prevent potential privacy leakage. However, even after distortion, a learning model against the mod-

ified database may accurately determine the income level values. It follows that the database is still unsafe and may be compromised.

This paper demonstrates this potential for privacy leakage in multi-relational classification and illustrates how such potential leaks

may be detected. We propose a method to generate a ranked list of subschemas that maintains the predictive performance on the class

attribute, while limiting the disclosure risk, and predictive accuracy, of confidential attributes. We illustrate and demonstrate the effec-

tiveness of our method against a financial database and an insurance database. 
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I. INTRODUCTION

Commercial relational databases currently store vast amounts

of data, including financial transactions, medical records, and

health informatics observations. The number of such relational

repositories is growing exponentially. Concerns regarding

potential data privacy breaches increasingly emerge. One of the

main issues organizations face is identifying, avoiding or limit-

ing the inference of attribute values. It is difficult to identify all

attribute interrelationships in relational databases due to the size

and complexities of database schema that contain multiple rela-

tions.
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Would it, then, not be enough to eliminate, distort, or limit

access to confidential data? Our analysis shows that this is not

the case. We show that, when following such an approach, there

may still be data disclosure during multi-relational classifica-

tion. We demonstrate that, through using publicly available

information and insider knowledge, one may still be able to

inject an attack that accurately predicts the values of confiden-

tial, or so-called sensitive, attributes. 

As an example, let us consider the financial database pub-

lished for the PKDD 1999 discovery challenge [1]. The left sub-

figure in Fig. 1 shows this database schema. The multirelational

classification task here aims to predict a new customer’s risk

level, i.e., the loan status attribute (so-called target attribute) in

the Loan table, for a personal loan. A loan may be good or bad.

The database consists of eight tables. Tables Account, Demo-

graphic, Disposition, Credit Card, Transaction, Client, and

Order are the so-called background relations and Loan is the

target relation. A typical multirelational classification algorithm

will identify relevant information (features) across the different

relations, i.e., both from the target table and the seven back-

ground tables, to separate the good and bad loans in the target

relation Loan. 

Suppose that we consider the payment type in the Order table

as being confidential; it follows that it should be protected. We

are interested in protecting the confidential information as to

whether a client is paying a home loan. In this example, if the

entire database schema is used, one may use a multi-relational

classification method, such as the CrossMine approach [2] to

predict the loan status in the Loan table with an accuracy of

87.5%. Consider, we shift our target attribute from the loan sta-

tus in the Loan table to the confidential attribute payment type

in the Order table. In this case, we are able to build a CrossMine

model to predict if an order is a household payment, with an

accuracy of 72.3%. That is, there is a potential for privacy leak-

age in such a database, if the full database schema is published. 

In a worse case scenario, even if we eliminate the payment

type from the Order table, an attacker may still be able to par-

tially infer the confidential information based on typical domain

knowledge (such as the account holder’s gender) and publicly

known statistical data (such as unemployment rates and the

number of households in a municipality), or through, for exam-

ple, assessing the similarity of different objects that tend to have

similar class labels [3] or creating tailored accounts in the sys-

tem [4]. Thus, the attacker can still use the remainder of the

database to build a classification model to predict the values of

payment type well.

However, suppose we publish a subschema that only consists

of tables Loan, Account, Transaction, and Disposition, as shown

in the right subfigure in Fig. 1. In this scenario, we are still able

to predict a loan’s status with an accuracy of 82.5%. However,

here, the predictive accuracy against the sensitive attribute pay-

ment type drops from 72.3% to 54.9%, only slightly better than

random guessing. The benefit, from a privacy perspective, is

high.

Motivated by the above observations, we introduce a method

that generates a ranked list of subschemas of a database. Each

subschema has a different balance between the two prediction

accuracies, namely the target attributes and the confidential

Fig. 1. The PKDD1999 financial database, where the classification target attribute (loan status) and the confidential attribute (payment type) are
highlighted in red; the left subfigure is the full database schema, and the right subfigure depicts the subschema selected for privacy preservation
publishing.
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attributes. The objective here is to create subschemas that main-

tain the predictive performance on the target class label, but

limit the prediction accuracy on confidential attributes. We

show the effectiveness of our strategy against two databases,

namely a financial database and an insurance database. 

The main contributions of this paper may be summarized as

follows. 

- We detail a challenge for privacy leakage in multirelational

classification. More specifically, we show that by shifting

the classification target from the target attributes to confi-

dential attributes, one may be able to predict the values for

sensitive attributes accurately.

- We introduce a learning approach, the Target Shifting Mul-

tirelational Classification (TSMC) method. The TSMC algo-

rithm generates a ranked list of subschemas from the original

database. Each subschema has a different balance between

the two prediction accuracies, namely the target attributes

and the sensitive attributes.

- We conduct experiments on two databases to show the

effectiveness of the TSMC strategy.

This paper is organized as follows. Section II introduces

related work. Section III presents the problem formulation. Sec-

tion IV introduces our method for privacy protection. Section V

discusses our experimental studies. Finally, Section VI con-

cludes the paper and outlines our future work.

II. RELATED WORK

Privacy leakage protection in data mining strives to prevent

revealing sensitive data without invalidating the data mining

results [5-8]. Often, data anonymization operations are applied

[9].

Current approaches for privacy preservation data mining aim

to distort individual data values, while enabling reconstruction

of the original distributions of the values of the confidential

attributes [5, 10-13]. For example, the k-anonymity model [14]

and the perturbation method [15] are two techniques for achiev-

ing this goal. In addition, the k-anonymity technique has been

extended to deal with multiple relations in a relational database

[16].

Recent research deals with correlation and association

between attributes to prevent the inference of sensitive data [17-

22]. For example, Association Rule Hiding (ARH) methods

sanitize datasets to prevent disclosure of sensitive association

rules from the modified data [17, 19]. Verykios et al. [17] inves-

tigate the potential privacy leakage and proposed solutions for

sensitive rule disclosure. Zhu and Du [18] incorporate k-ano-

nymity into the association rule hiding process. Tao et al. [20]

propose a method to distort data to hide correlations between

non-sensitive attributes. Xiong et al. [3] present a semi-super-

vised learning approach to prevent privacy attacks that make

use of the observation that similar data objects tend to have sim-

ilar class labels.

Data leakage prevention, when releasing multiple views from

databases, has also been intensively studied. For example, Yao

et al. [23] introduce a method to determine if views from a data-

base violate the k-anonymity principle, thus disclosing sensitive

associations that originally exist in the database. In [24], meth-

ods for validating the uncertainty and indistinguishability of a

set of releasing views over a private table are proposed. In addi-

tion, privacy leakage in a multi-party environment has been

investigated [25].

This paper details a different direction. Our method does not

distort the original data to protect sensitive information. Rather,

we select a subset of data from the original database. The selected

attributes are able to maintain high accuracies against the target

attributes, while lowering the predictive capability against con-

fidential attributes, thus alleviating the risk of probabilistic

(belief) attacks of sensitive attributes [9]. This stands in contrast

to the above-mentioned anonymization techniques, such as gen-

eralization, suppression, anatomization, permutation and pertur-

bation. Furthermore, it follows that our approach is not tied to a

specific data mining technique, since there is no need to learn

from masked data.

III. PROBLEM FORMULATION

In this paper, a relational database ℜ is described by a set of

tables {R1,· · ·,Rn}. Each table Ri consists of a set of tuples TRi
, a

primary key, and a set of foreign keys. Foreign key attributes

link to primary keys of other tables. This type of linkage defines

a join between the two tables involved. A set of joins with m

tables R1  · · ·  Rm describes a join path, where the length of it

is defined as the number of joins it contains.

A multirelational classification task involves a relational

database ℜ that consists of a target relation Rt, a set of back-

ground relations {Rb}, and a set of joins {J} [26]. Each tuple in

this target relation, i.e. x ∈ TRt
, is associated with a class label

that belongs to Y (target classes). Typically, the task here is to

find a function F (x) that maps each tuple x from the target table

Rt to the category Y. That is,

Y = F(x, Rt, {Rb}, {J}), x ∈ TRt

Over the past decade, the exponentially growing number of

commercial relational databases invoked a surge of interest on

multi-relational classification. State-of-the-art multi-relational

methods, such as CrossMine [2], TILDE [27], FOIL [28], and

MRC [29], have been proposed to effectively and efficiently

discover patterns across multiple interlinked tables in a rela-

tional database. 

We formalize the problem of privacy leakage in multirela-

tional classification, as follows. 

A relational database ℜ = (Rt, {Rb}) with target attribute Y in

Rt exists. In addition, we have an attribute C that is to be pro-

tected. C ∈ {Rb} (in cases where both Y and C reside in the Rt

table, one may create two views from Rt that separate the two

attributes into two relations), and C has either to be removed

from the database or the values have to be distorted. However,

C may potentially be predicted using ℜ with high accuracy. 

Our objective is to find a subschema that accurately predicts

the target attribute Y, but yields a poor prediction for the confi-

dential attribute C. To this end, we generate a ranked list of sub-

schemas of ℜ. Each subschema ℜ'(ℜ'  ℜ) predicts the target

attribute Y with high accuracy, but has limited predictive capa-

bility against the confidential attribute C. To this end, we con-

⊂
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struct a number of different subschemas of ℜ. For each subschema

ℜ', we determine how well it predicts the target attribute Y and

we calculate its degree of sensitivity in terms of predicting the

confidential attribute C. Finally, we rank the subschemas based

on this information. In the next sections, we discuss our

approach.

IV. TARGET SHIFTING MULTIRELATIONAL 
CLASSIFICATION

Our Target Shifting Multirelational Classification (TSMC)

approach aims to prevent the prediction of confidential attributes,

while maintaining the predictive performance of the target

attribute. To this end, as described in Algorithm 1, the TSMC

method consists of the following four steps. 

First, the attributes that are correlated with a confidential

attribute are identified. Note that, following Tao et. al, [20] we

here use the term correlation to denote the associations, interre-

lationships or links between attributes in our database. It fol-

lows that such correlated attributes may reside in relations other

than those containing the confidential attribute. Second, based

on the correlation computed from the first step, the degrees of

sensitivity for different subschemas of the database are calcu-

lated. Next, subschemas consisting of different tables of the

database are constructed. Finally, for each subschema, its per-

formance when predicting the target attribute, along with its pri-

vacy sensitivity level, is computed. Thus, a ranked list of

subschemas is provided. These four steps are discussed next.

A. Identify Correlated Attributes Across Interlinked
Tables

The aim in the first phase of the TSMC method is to identify

the attributes that are correlated with the confidential attribute

C. That is, this step finds attributes that may be used to predict

C. One needs to compute the correlation between attribute sets

across the multiple tables of the database to find correlated

attributes. The TSMC method learns a set of high quality rules

against the confidential attribute C to address the above issue.

That is, it searches attributes (attribute sets) across multiple

tables to find a set of rules that predict the values of C. To this

end, we employ the CrossMine algorithm that is able to accu-

rately and efficiently construct a set of conjunctive rules using

features across multiple relations in a database [2]. The

CrossMine method employs a general-to-specific search to

build a set of rules to explain many positive examples and cover

as few negative ones as possible. This sequential covering algo-

rithm repeatedly finds the best rule to separate positive exam-

ples from negative ones. All positive target tuples satisfying that

rule are removed after building each rule. The CrossMine strat-

egy evaluates the different combinations of relevant features

across relations to build a good rule. The method is able to con-

struct accurate rules that scale by employing a virtual join tech-

nique between tables together with a sampling method to

balance the number of positive and negative tuples while build-

ing each rule. For example, a rule may have the following form:

Loan.status = good ← (Loan.account-id  Account.account-id)

(Account.frequency = monthly) (Account.client-id  Cli-

ent.client-id) 

(Client.birth date < 01/01/1970)

This rule says a monthly loan where the borrower was born

before 1970 is classified as being of low risk. In this rule, the

attributes frequency in the Account table and birth date from the

Client table work together to predict the loan status in the Loan

table. That is, such a rule is able to capture the interplay

between attributes across multiple tables.

In summary, we use CrossMine to learn which other attributes

are correlated, or have a relationship with, the confidential

attributes. That is, our approach uses a set of rules as created by

this classifier, to identify the most relevant attributes. It follows

that an implicit assumption is that an informative classification

model is constructed by CrossMine. 

The TSMC method ranks the constructed rules based on their

tuple coverage and then selects the first n rules that cover more

than 50% of the training tuples. That is, the algorithm considers

the set of rules that can predict the confidential attributes better

than random guessing.

B. Assign Privacy Sensitivity to Subschemas

The TSMC method estimates the predictive capability of the

subschemas after obtaining a set of rules that finds the other

attributes that are relevant when learning the confidential

attributes. 

Consider the following rule that predicts an order’s payment

type in the Order table with 70% accuracy.

Order.payment type = house payment ←  (Order.amount ≥

1833)

(Order.account_id  Disposition.account_id) (Disposition.cl-

ient_id 

Client.client_id) (Client.birth_date ≤ 31/10/1937)

Algorithm 1. TSMC approach

Input: a relational database ℜ = (Rt, {Rb}); Y ∈ Rt is the tar-

get attribute and C ∈ {Rb} is a confidential attribute

Output: a ranked list of subschemas of ℜ. Each subschema

ℜ' can predict Y with high accuracy, but has limited predic-

tive capability against C

1: using C (instead of Y) as the classification target, construct

a set of high quality rules using ℜ

2: derive the subschema privacy sensitivity P from the set of

rules learned

3: convert schema ℜ into undirected graph G(V, E), using Rt

and Rb as nodes V and joins J as edges E

4: construct a set of subgraphs from G ⇒ subgraphs set {Gs1
,

· · · , Gsn
}

5: for each subset ∈ {Gs1
 , · · · , Gsn

} do

6: compute the PI (with respect to the target attribute Y )

of the subgraph subset (namely, subschema ℜ' ∈ ℜ),

using Equations 1 and 2

7: end for

8: rank the {ℜ'} based on their PI values

9: return the ranked {ℜ'}
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Thus, if our published subschema includes tables Order, Dis-

position, and Client, one may use this subschema to build a

classification model and then to determine an order’s payment

type with an accuracy of 70%. 

The previous observation suggests that, by using the set of

high quality rules learned, we can estimate the degree of sensi-

tivity (denoted as P) of a subschema, in terms of its predictive

capability on the confidential attribute. The value of P for a

subschema is calculated as follows. First, we identify the set of

m ( ) rules whose conjunctive features are covered by

some or all of the tables in the subschema. Next, we sum the

number of tuples covered by each one of these rules (denoted as

NCi). Finally, we divide the sum by the total number of tuples

(noted as NS) containing the confidential attributes. Formally,

the value P for a subschema is calculated as follows.

P = (1)

For example, as the above-mentioned rule covers 70% of the

total number of tuples, we will assign 0.7 as the degree of sensi-

tivity for the subschema {Order, Disposition, Client}. Note that,

there may be another rule against this subschema, such as

Order.payment type = house payment ← (Order.amount ≥

1833)

(Order.account_id  Disposition.account_id) (Disposition.type

= owner)

In this case, the sensitivity of subschema {Loan, Account,

and Client} should be calculated using all tuples covered by the

two rules. This is due to CrossMine being a sequential covering

method, where each of the constructed rules focuses on cover-

ing a different portion of all tuples. 

The next step of the TSMC method, as described in Algo-

rithm 1, is to construct a set of subschemas and evaluate their

contained information, in terms of predicting both the target

attribute Y and the confidential attribute C.

C. Subschema Evaluation

The TSMC method adopts the subschema construction

approach presented in our earlier work [29]. That is, in the

TSMC method, each subschema consists of a set of subgraphs,

each corresponds to a unique join path in the relational data-

base. The subgraph construction procedure is discussed next.

1) Subgraph Construction: The subgraph construction pro-

cess aims to build a set of subgraphs given a relational database

schema, where each subgraph corresponds to a unique join path.

The construction process initially converts the relational data-

base schema into an undirected graph, using the relations as the

nodes and the joins as edges.

Two heuristic constraints are imposed on each constructed

subgraph. The first is that each subgraph must start at the target

relation. This constraint ensures that each subgraph contains the

target relation and, therefore, is able to construct a classification

model. The second constraint is for relations to be unique for

each candidate subgraph. Typically, in a relational domain, the

number of possible join paths given a large number of relations

is very large, making it too costly to exhaustively search all join

paths [2]. In addition, join paths with many relations may

decrease the number of entities related to the target tuples.

Therefore, this restriction was introduced as a trade-off between

accuracy and efficiency.

Using these constraints, the subgraph construction process

proceeds initially by finding unique join paths with two rela-

tions, i.e. join paths with a length of one. These join paths are

progressively lengthened, one relation at a time. The length of

the join path is introduced as the stopping criterion. The con-

struction process prefers subgraphs with shorter length. The rea-

son for preferring shorter subgraphs is that semantic links with

too many joins are usually very weak in a relational database [2,

29, 30]. Thus, when considering databases with complex sche-

mas, one can specify a maximum length for the join paths.

When this number is reached, the join path extraction process

terminates.

After constructing a set of subgraphs, the TSMC algorithm is

then able to form different subschemas and evaluate their pre-

dictive capabilities on both the target and confidential attributes.

2) SubInfo of Subgraph: Recall that each subschema con-

sists of a set of subgraphs. We prefer to have a set of subgraphs

that are 1) strongly correlated to the target attributes, but 2)

uncorrelated with one another, to have better predictive capabil-

ity for the target attributes. The first condition ensures that the

subgraphs can be useful in predicting the target attributes. The

second condition guarantees that information in each subgraph

does not overlap, when predicting the class. That is, we conduct

a form of pruning to identify diverse subgraphs. It follows that

all new subschemas that are subsumed by, or highly correlated

to, a high risk subschema also poses a risk. Thus, all subsche-

mas should be tested before releasing them to the users to

enhance privacy. 

We adopted the Subgraph Informative (SubInfo) calculation,

as presented in our earlier work [29], to estimate the correlation

between subgraphs. In the approach, SubInfo is used to describe

the knowledge held by a subgraph with respect to the target

classes in the target relation. Following the same line of

thought, the class probabilistic predictions generated by a given

subgraph classifier is used as its corresponding subgraph’s Sub-

Info. Each subgraph may separately be “flattened” into a set of

attribute-based training instances by generating relational (aggre-

gated) features. Learning algorithms, such as decision trees [31]

or support vector machines [32], may subsequently be applied

to learn the relational target concept, forming a number of sub-

graph classifiers. Accordingly, the subgraph classifiers are able

to generate corresponding SubInfo variables.

After generating the SubInfo variable for each subgraph, we

are ready to compute the correlation among different subgraph

subsets. This is discussed next.

3) Subschema Informativeness: Following the idea pre-

sented in our earlier work [29], a heuristic measurement has

been used to evaluate the “goodness” of a subschema (i.e., a set

of subgraphs), for building an accurate classification model.

The “goodness” of a subschema I is calculated as follows.

I = (2)

m n⊆

Σi 1=

m
NCi( )

NS
-------------------------

kRcf

k k k 1–( )Rff+

-----------------------------------
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Here, k is the number of SubInfo variables in the subset (i.e.,

subschema),  is the average SubInfo variable-to-target vari-

able correlation, and  represents the average SubInfo vari-

able-to-SubInfo variable dependence. This formula has previously

been applied in test theory to estimate an external variable of

interest [33-35]. Hall [36] adapted it to the Correlation-based

feature selection (CFS) strategy, where this measurement aims

to discover a subset of features that are highly correlated to the

class. Also, in our earlier work, as presented in [37], we utilized

this formula to select a subset of useful views for multirelational

classification.

The Symmetrical Uncertainty (U) [38] is used to measure the

degree of correlation between SubInfo variables and the target

class ( ), as well as the correlations between the SubInfo vari-

ables themselves ( ). This score is a variation of the Informa-

tion Gain (InfoGain) measure [31]. It compensates for InfoGain’s

bias toward attributes with more values, and has been used by

Ghiselli [33] and Hall [36]. Symmetrical Uncertainty is defined

as follows:

Given variables W and Z,

U = 2.0 × 

where H(W) and H(Z) are the entropies of the random variables

W and Z, respectively. The entropy of a random variable Z is

defined as

H(Z) = log2(p(z))

The InfoGain is given by

         InfoGain = log2(p(z))

                            + log2(p )

4) Subschema Privacy-Informativeness: We need to con-

sider the predictive capabilities against both the target attribute

(represented by I) and the confidential attribute (represented by

P) when a database subschema is published to protect privacy

leakage. The TSMC method uses a subschema’s PI value to

reflect its performance when predicting the target attributes as

well as its degree of sensitivity in terms of predicting the sensi-

tive attributes, based on this observation. 

The PI value of a subschema is computed using Equations 1

and 2, as follows.

PI = I * (1 − P) = 

This formulation suggests that a subschema with more infor-

mation for predicting the target attribute, but with very limited

predictive capability on the confidential attribute, is preferred.

That is, for privacy protection, a subschema should have a

larger I value and a small P value.

5) Subschema Searching and Ranking: The evaluation pro-

cedure searches all of the possible SubInfo variable subsets,

computes their PI values, and then constructs a ranking of them

to identify a subschema, i.e., a set of uncorrelated subgraphs,

which has a large I value but a small P value. 

The STMC method uses a best-first search strategy [39] to

search the SubInfo variable space. The method starts with an

empty set of SubInfo variables, and keeps expanding, one vari-

able at a time. In each round of the expansion, the best variable

subset, namely the subset with the highest PI value is chosen.

In addition, the algorithm terminates the search if a preset num-

ber of consecutive non-improvement expansions occur. 

Thus, the method generates a ranked list of subschemas with

different PI values. As described in Algorithm 1, the TSMC

method calculates such a list. Accordingly, one may select a

subschema based on the requirements for the predictive capabil-

ities on both the target attribute and the confidential attributes.

V. EXPERIMENTAL EVALUATION

In this section, we demonstrate the information leakage in

multirelational classification with experiments against two data-

bases, namely the previously introduced financial database from

the PKDD 1999 discovery challenge [1] and the insurance data-

base from ECML 1998 [40]. In addition, we discuss the outputs

resulting from the TSMC method to show its effectiveness for

privacy leakage prevention in these two multirelational classifi-

cation tasks. Note that, confidential attributes are removed in

these experiments, or distorted, after the application of the

TSMC method, since the algorithm first needs to build rules

against these attributes. We implemented the PPMC algorithm

using Weka version 3.6 [41]. The CrossMine algorithm was

obtained from its authors. We ran these experiments on a PC

with a 2.66 Ghz Intel Quad CPU and 4 GByte of RAM. 

A. PKDD’99 Financial Database

In our first experiment, we used the above-mentioned finan-

cial database that was offered by a Czech bank and contains

typical business data [1]. Fig. 1 shows the database. Recall that,

the multirelational classification task aims to predict a new cus-

tomer’s risk level for a loan. The database consists of eight

tables. Tables Account, Demographic, Disposition, Credit Card,

Transaction, Client, and Order are the background relations and

Loan is the target relation. Our experiment used the data pre-

pared by Yin et al [2]. 

1) Experimental Setup: In this experiment, we consider the

payment type in the Order table as being confidential and it fol-

lows that it should be protected. We assume that the payment

type information will either be eliminated from the database, or

distorted, prior to being published. The Order table contains the

details of an order to pay a loan. It includes the account infor-

mation, bank of the recipient, account of the recipient, debited

amount, and the previously introduced payment type. The pay-

ment type attribute indicates one of four types of payments,

namely for insurance, home loans, leases or personal loans. In

this scenario, more than half of the payments are home loan

repayment, i.e. there are 3,502 home loan payment and 2,969

other payment orders. We are interested in protecting the confi-

dential information as to whether a client is paying a home loan.
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2) Potential Privacy Leakage: As a first step, we shifted our

target attribute from the loan status in the Loan table to the pay-

ment type in the Order table (highlighted in bold in Fig. 1). We

used CrossMine to build a classification model [2]. Our experi-

mental results show that we are able to build a set of rules to

predict if an order is a household payment with an accuracy of

72.3%. That is, there is a potential for privacy leakage in such a

database. 

A possible solution here would be to prevent the prediction

of the type of payment from the Order table with high confi-

dence, but still maintain the predictive performance against the

loan status in the Loan table. The TSMC method is designed to

achieve this goal. Next, the execution of the TSMC method

against this database is discussed.

3) Subschema Privacy Sensitivity: The first step of the

TSMC method aims to identify attributes that predict the sensi-

tive attribute, through searching features across multiple tables

in the database. 12 high coverage rules were selected from the

rules built for predicting the payment type in the Order table.

These cover 3,341 instances in the Order table. That is, over

50% of the examples have been covered by the set of rules

selected. The aim for the rule selection is to identify attributes

(across tables) that are useful to predict the sensitive attribute

payment type in the Order table. 

For example, Table 1 lists three of the 12 rules learned. The

first rule, as described in Table 1, indicates that if a payment

with an amount larger than 1,833 in the Order table, and the cli-

ent, linked through the Disposition table, was born no later than

Oct 31, 1937, then it was a home loan payment. This rule

involves two attributes that come from different tables. Simi-

larly, the second rule shows that the amount attribute in the

Order table works together with the type attribute in the Trans-

action table. The rule also indicates that the level of unemploy-

ment in 1995 and the number of municipalities with between

Table 1. Sample rules learned

Order.payment type = house payment ← 

(Order.amount ≥ 1833) (Order.account_id  Disposition.account_id)

(Disposition.client_id  Client.client_id) (Client.birth_date ≤ 31/10/

1937)

Order.payment type = house payment ← 

(Order.amount ≥ 1947) (Order.account_id  Transaction.account_id)

(Transaction.type == house) (Order.account_id  Account.account_id)

(Account.district_id  Demographic.district_id)

(Demographic.unemploy95 ≥ 339) (Demographic.num_lt_10000 ≥ 3)

Order.payment type = non house payment ← 

(Order.account_id  Disposition.account_id) (Disposition.client_id

 Client.client_id)

(Client.birth_date ≥ 27/11/1936)(Client.birth_date ≤ 04/07/1951)

(Order.amount ≤ 3849)(Order.account_id  Transaction.account_id)

(Transaction.amount ≥ 8155) (Client.district_id  Demographic.

district_id)

(Demographic.unemploy96 ≤ 539)

Table 2. The number of tuples covered by the set of selected rules
against the financial database

Subschemas
No. 

tuples covered

{Order,Disposition,Client} 896

{Order,Disposition,Client,Demographic} 1,154

{Order,Disposition,Client,Demographic,Transaction} 1,394

{Order,Disposition,Client,Demographic,Transaction,

Account}
3,562

{Order,Disposition,Client,Demographic,Account} 1,800

{Order,Disposition,Client,Account} 1,103

{Order,Demographic,Account} 404

{Order,Demographic,Transaction,Account} 1,130

{Order,Transaction,Account} 497

{Order,Transaction} 160

Table 3. Privacy sensitivity of subschemas against the financial database

Subschemas
Privacy 

sensitivity

{Order,Disposition,Client} 0.25

{Order,Disposition,Client,Demographic} 0.32

{Order,Disposition,Client,Demographic,Transaction} 0.39

{Order,Disposition,Client,Demographic,Transaction,

Account}

1.0

{Order,Disposition,Client,Demographic,Account} 0.51

{Order,Disposition,Client,Account} 0.31

{Order,Demographic,Account} 0.11

{Order,Demographic,Transaction,Account} 0.32

{Order,Transaction,Account} 0.14

{Order,Transaction} 0.04

Table 4. Constructed subgraphs against the financial database

Loan

Loan  Account

Loan  Order

Loan  Transaction

Loan  Account  Disposition

Loan  Account  Demographic

Loan  Account  Disposition  Credit Card

Loan  Account  Disposition  Client

Loan  Account  Demographic  Client

Loan  Account  Demographic  Client  Disposition

Loan  Account  Demographic  Client  Disposition  

Credit Card
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2,000 and 9,999 inhabitants in the Demographic table are of

importance to categorize the values for the payment type in the

Order table. The same idea was demonstrated by the third rule

that includes attributes birth date in the Client table, amount in

the Order table, amount in the Transaction table, and the level of

unemployment in 1996 from the Demographic table. Impor-

tantly, these rules indicate that publicly known statistical data,

such as unemployment rates and the number of households in a

municipality, may be used to inject attacks when aiming to tar-

get individuals. That is, an attacker may be able to infer confi-

dential information from the data mining results through the

combination of public and insider knowledge. 

These rules show how attributes across tables work together

to predict the confidential attributes. That is, these rules were

able to capture the correlation and their predictive capability

among multiple attributes across multiple tables, regardless of

the attribute types. 

As described in Algorithm 1, the second step of the TSMC

method is to identify the privacy sensitivity of different sub-

schemas. Let us reconsider the first conjunction rule, as shown

in Table 1. If we evaluate this rule at the table level, we may

conclude that the subschema which consists of the tables

{Order, Disposition, Client} has attributes to construct this rule.

Thus, we may want to avoid using this subschema or, at least,

restrict access to it. 

The privacy sensitivity of a subschema is computed using

Equation 1, as described in Section IV-B. Accordingly, from the

tuple coverage of Table 2, we calculate the degree of sensitivity

for each subschema using Equation 1, and present the results in

Table 3. As shown in Table 3, different subschemas have vari-

ous privacy sensitivities, in terms of predicting the confidential

attribute payment type in the Order table. For example, the sub-

schema that consists of tables {Order, Disposition, Client,

Demographic, Transaction, and Account} has the highest pri-

vacy sensitivity. That is, this subschema may be used to build an

accurate classification model to determine the value of an

order’s payment type.

We are able to construct and select different subschemas with

various privacy sensitivities against the confidential attributes

and predictive capability for the target attributes, with the

degrees of privacy sensitivity of different subschemas of the

provided database. We will discuss these two elements in detail

next.

4) Subschema Evaluation: Following the strategy as described

in Section IV-C, we construct the set of subgraphs from the pro-

vided database. Each subgraph corresponds to a join path start-

ing with the target table. Eleven subgraphs were constructed by

the TSMC method. The subgraphs are presented in Table 4. 

After constructing the subgraphs, the search algorithm com-

putes different combinations of subgraphs, resulting in different

subschemas. Consequently, each subschema has a PI value that

reflects information about the target attribute classification, as

well as the predictive capability against the confidential attributes.

That is, a ranked list of subschemas, each with a measurement

describing the trade-off between the predictive capability

against the target attribute and confidential attribute, is created.

Table 5 presents the top ten subschemas generated from the

financial database. In this table, we show the tested results

against the target label (i.e., the loan status), as well as the con-

fidential attribute (namely, the payment type). We provide the

accuracy obtained against the full database schema at the bot-

tom of the table for comparison. 

One can see from Table 5 that the TSMC method has created

a list of subschemas with different predictive capability against

the target attribute and the confidential attribute. The experi-

mental results, as shown in Table 5, suggest that one may select

a subschema with a good trade-off between the two predictive

capabilities. 

Specifically, one is able to identify the dangerous subsche-

mas that pose a high data leakage risk. For example, in Table 5,

consider the subschema containing tables {Loan, Transaction,

Account, Demographic, and Client}. In this case, the accuracy

against the target attribute remains the same as against the full

database schema. However, the accuracy drops from 72.3% to

60.8% for the confidential attribute. It follows that it is up to the

owner of the database to decide if this potentially high level of

leakage is acceptable. Conversely, one may prefer to publish the

Table 5. The top 10 ranked subschemas and their PI values as well as the accuracies obtained against the target and sensitive attributes, for the financial
database

Subschemas selected for release Acc. target (%) Acc. sensi. (%) PI val

{Loan, Order, Transaction, Account, Disposition, Credit Card} 85.0 66.9 0.294

{Loan, Transaction, Account, Disposition} 82.5 54.9 0.144

{Loan, Account, Transaction} 87.5 61.4 0.144

{Loan, Account, Transaction, Order} 87.5 72.0 0.139

{Loan, Order, Transaction, Account, Disposition} 82.5 64.7 0.139

{Loan, Transaction, Account, Disposition, Client} 82.5 59.3 0.126

{Loan, Transaction, Account, Disposition, Client, Order} 85.0 68.9 0.121

{Loan, Transaction, Account, Demographic} 87.5 62.2 0.114

{Loan, Transaction, Account, Demographic, Client} 87.5 60.8 0.114

{Loan, Transaction, Account, Demographic, Client, Order} 87.5 72.1 0.110

All tables in the database 87.5 72.3
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subschema with tables {Loan, Transaction, Account, and Dis-

position} to have more confidence in protecting the sensitive

attribute. One is able to predict the confidential payment type in

the Order table with an accuracy of 54.9 % using this sub-

schema. It follows that this value is only slightly better than ran-

dom guessing. However, this subschema still predicts the target

attribute, namely the loan status from the Loan table with an

accuracy of 82.5%, slightly lower than the 87.5% against the

original, full database. 

In summary, the experimental results show that the TSMC

method generates a ranked list of subschemas with different

trade-offs between multirelational classification accuracy and

predictive capability against confidential attributes.

B. ECML’98 Insurance Database

Our second experiment used the database provided for the

ECML 1998 challenge [40]. This database was extracted from a

data warehouse of a Swiss insurance company. Originally, two

learning tasks, namely tasks A and B were presented from this

database. Task A is to classify the partner category into 1 or 2.

Task B categorizes the household category of class positive or

negative. These two tasks are included in tables Task A and

Task B, respectively. Eight background relations are provided

for the two learning tasks. They are stored in tables Part, Hhold,

Eadr, Padr, Parrol, Tfkomp, Tfrol, and Vvert, respectively. The

Part table contains the partners of the insurance company. Most

of these partners are customers. Partners’ household informa-

tion is collected into the Hhold table and their addresses are

described in the Eadr and Padr tables. In addition, tables Par-

rol, Tfkomp, Tfrol, and Vvert contain partners’ insurance infor-

mation.

1) Experimental Setup: In this experiment, we used the new

star schema of the ECML 1998 database, as prepared in [40]. In

addition, we removed attributes that contain missing values

from the original database, to avoid finding appropriate meth-

ods to fill these missing categorical or numerical values. Fig. 2

depicts the resulting database schema. In addition, we suppose

that the multirelational classification task here aims to classify

partner category in the Task A. We consider the household cat-

egory in Task B as being confidential and it follows that it

should be protected. That is, we are interested in protecting the

confidential information as to whether a household category is

positive. This database includes 3,705 positive households and

3,624 negative ones.

2) Experimental Results: The collected subgraphs and the

privacy sensitivities of different subschemas constructed by the

TSMC method for the ECML database are presented in Tables 6

and 7, respectively. In addition, we provided the top ten sub-

schemas generated from this insurance database in Table 8. In

this table, we show the tested results against the target label

(i.e., the partner category), as well as the confidential attribute

(namely, the household category). We provide the accuracy

obtained against the full database schema at the bottom of the

table for comparison.

Results from the last row of Table 8 indicate that there is a

potential for privacy leakage in such a database, given that the

full database schema is published for multirelational classifica-

tion tasks. In this case, we are able to build a CrossMine model

to predict if a household is positive with an accuracy of 69.5%.

That is, we can use the published database to predict the values

Fig. 2. ECML98 database schema; the classification target attribute
(partner category) and the confidential attribute (household category) are
highlighted in bold.

Table 6. Privacy sensitivity of subschemas against the insurance database

Subschemas Privacy sensitivity

{Task B, Tfkomp, Vvert, Hhold, Part} 1.00

{Task B, Tfkomp, Vvert, Hhold, Tfrol} 0.58

{Task B, Tfkomp, Vvert, Hhold} 0.56

{Task B, Vvert, Hhold, Part} 0.25

{Task B, Vvert, Hhold} 0.22

{Task B, Tfkomp, Vvert, Part} 0.07

{Task B, Tfkomp, Hhold, Part, Parrol} 0.06

{Task B, Tfkomp, Hhold, Part} 0.05

{Task B, Hhold} 0.03

{Task B, Tfkomp, Vvert} 0.02

{Task B, Tfkomp, Part} 0.01

Table 7. Constructed subgraphs against the insurance database

Task A

Task A  Eadr

Task A  Hhold

Task A  Padr

Task A  Parrol

Task A  Part

Task A  Tfkomp

Task A  Tfrol

Task A  Vvert
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of the household category attribute.

The TSMC method has created a list of subschemas with dif-

ferent predictive capability against the target attribute and the

confidential attribute to cope with such potential data leakage.

The experimental results, as shown in Table 6, suggest that one

can select a subschema with a good trade-off between the two

predictive capabilities. For example, in Table 8, consider the

subschema containing tables {Task A, Eadr, Parrol, and Tfkomp}.

In this case, the accuracy against the target attribute is slightly

higher than that against the full database schema, and accuracy

against the confidential attribute drops about 10% (from 69.5%

to 59.6%). Alternatively, one may prefer to publish the sub-

schema with tables {Task A, Eadr, Parrol} to have more confi-

dence in protecting the sensitive attribute. One is able to predict

the confidential household category in the Task B table with an

accuracy of only 50.0% using this subschema. It follows that

this value is not better than random guessing. Nevertheless, this

subschema still predicts the target attribute, namely the partner

category from the Task A table with an accuracy of 83.6%,

which is slightly higher than the 83.2% against the original, full

database. These experimental results show that the TSMC

method is able to generate a ranked list of subschemas with dif-

ferent trade-offs between the multirelational classification accu-

racy and the predictive capability against the confidential

attributes.

Importantly, the experimental results, as shown in Table 8,

indicate that one is able to identify the dangerous subschemas

that pose a high data leakage risk. For instance, the subschema

containing tables {Task A, Padr, Parrol, Tfkomp, Tfrol, and

Vvert} and the subschema containing {Task A, Parrol, Tfkomp,

Tfrol, and Vvert} can be used by the CrossMine method to pre-

dict the sensitive attribute household category with an accuracy

of over 65%. That is, these subschemas can be used to attack the

confidential attribute with accuracy only slightly lower than that

against the original, full database. Conversely, the subschema

containing tables {Task A, Eadr, and Parrol} and the subschema

containing tables {Task A, Eadr, and Tfrol} can predict the

value of a household’s category with an accuracy of only about

50%. It follows that it is up to the owner of the database to

decide if a certain level of potential leakage is acceptable.

In summary, our experimental results against the PKDD

financial and ECML insurance databases show that the TSMC

method generates a ranked list of subschemas with different

trade-offs between the multirelational classification accuracy

and the predictive capability against the confidential attributes.

In particular, the TSMC method is able to identify the danger-

ous subschemas that pose a high data leakage risk.

C. Scalability Analysis

The computational cost of the TSMC algorithm heavily

depends on the subschema evaluation procedure, as depicted in

Section IV-C. We generated six synthetic databases with differ-

ent characteristics to evaluate the scalability of the TSMC

method against complex databases. The aim of these experi-

ments was to further explore the applicability of the TSMC

algorithm when considering relational repositories with a vary-

ing number of relations and tuples.

1) Synthetic Databases: The database generator was obtained

from Yin et al. [2]. In their paper, Yin et al. used this database

generator to create synthetic databases to mimic real-world

databases to evaluate the scalability of the multirelational clas-

sification algorithm CrossMine. The generator first generates a

relational schema with a specified number of relations to create

a database. The first randomly generated table was chosen from

these as the target relation and the others were used as back-

ground relations. In this step, a number of foreign keys is also

generated following an exponential distribution. These joins

connect the created relations and form different join paths for

the databases. Finally, synthetic tuples with categorical attributes

(integer values) are created and added to the database schema.

Users can specify the expected number of tuples, attributes,

relations, and joins, etc., in a database to obtain various kinds of

databases using this generator. Interested readers are referred to

the paper presented by Yin et al. [2] for a detailed discussion of

the database generator. 

The expected number of tuples and attributes were set to

1,000 and 15, respectively, for each of the generated databases.

Table 8. The top 10 ranked subschemas and their PI values as well as
the accuracies obtained against the target and sensitive attributes, for the
insurance database

Subschemas selected for release
Acc. target 

(%)

Acc. sensi. 

(%)
PI val

{Task A, Eadr, Parrol, Tfkomp, Vvert} 84.9 62.8 0.196

{Task A, Eadr, Parrol, Tfkomp} 84.1 59.6 0.188

{Task A, Eadr, Tfkomp, Vvert} 81.8 63.9 0.185

{Task A, Eadr, Tfkomp} 81.8 60.9 0.174

{Task A, Padr, Parrol, Tfkomp, Tfrol,

Vvert}

83.7 65.5 0.124

{Task A, Parrol, Tfkomp, Tfrol, Vvert} 84.2 65.8 0.123

{Task A, Eadr, Parrol} 83.6 50.0 0.117

{Task A, Padr, Parrol, Tfkomp, Tfrol} 84.5 62.3 0.114

{Task A, Parrol, Tfkomp} 83.5 60.2 0.107

{Task A, Eadr, Tfrol} 79.6 52.6 0.091

All tables in the database 83.2 69.5

Table 9. Parameters for the data generator

Parameter Value

Number of relations 10, 20, 50, 80, 

100, or 150

Min number of tuples in each relation 50

Expected number of tuples in each relation 1,000

Min number attributes in each relation 2

Expected number of attributes in each relation 15

Min number of values in each attribute 2

Expected number of values in each attribute 10

Expected number of foreign keys in each relation 2
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Default values, as found in Yin et al. [2], were used for the other

parameters of the data generator. Table 9 lists the most impor-

tant parameters. The six databases were generated with 10, 20,

50, 80, 100, and 150 relations (denoted as SynR10, SynR20,

SynR50, SynR80, SynR100, and SynR150), respectively. We

ran these experiments on a PC with a 2.66 Ghz Intel Quad CPU

and 4 GByte of RAM. 

2) Experimental Results: Recall from Sections V-A and V-B

that, for the financial and insurance databases, each subschema

in the TSMC method consists of up to 11 subgraphs. In our

experiment here, we varied the join path length, as defined in

Section III, from zero to six, against each of the six synthetic

databases. That is, we allowed a subgraph, i.e., a join path, to

contain up to seven tables. Thus, the number of subgraphs to be

evaluated by the TSMC algorithm for each database increases

substantially. For example, the number of subgraphs for the

SynR50, SynR80, and SynR100 databases are 570, 287, and

435, respectively, when the join path length is six. More details

can be found in Fig. 3. The run time required to complete the

calculation (in seconds) for each of the databases and the num-

ber of subgraphs collected by the TSMC approach are shown in

Figs. 3 and 4, respectively. 

The experimental results, as presented in Figs. 3 and 4, indi-

cate that, even though the number of subgraphs that has to be

explored by the TSMC approach increases quasi exponentially,

with respect to the join path length in databases with a large

number of relations and tuples, the execution time required for

the TSMC algorithm increases much less rapidly. For example,

as shown in Fig. 3, for the SynR50 database, the number of sub-

graphs explored by the TSMC strategy jumped from 44 to 119,

and then to 570 when the length of join paths allowed were set

to 3, 4, and 6, respectively. However, the run time associated

with these processes was 10, 19, and 50 seconds, respectively.

Similar results are observed with the remaining five databases.

Importantly, for all six databases, although the number of sub-

graphs explored by the TSMC method is very large, the execu-

tion time required by the TSMC approach is relatively small. In

conclusion, these experimental results suggest that the TSMC

strategy scale relatively well in term of run time when applied

to complex databases.

VI. CONCLUSIONS AND DISCUSSIONS

Relational databases have been routinely used to collect and

organize much real-world data, including financial transactions,

medical records, and health informatics observations, since

their first release in 1970s. Mining such repositories offers a

unique opportunity for the data mining community. However, it

is difficult to detect, avoid and limit the inference capabilities

between attributes for complex databases, especially during data

mining. This is due to the complexity of the database schema,

the involvement of multiple interconnected tables and various

foreign key joins, thus resulting in potential privacy leakage.

This paper proposed a method to generate a ranked list of

subschemas for publishing to address the above-mentioned

challenge. These subschemas aim to maintain the predictive

performance on the target attribute, but limit the prediction

accuracy against confidential attributes. Thus, the owner of the

database may instead decide to publish one of the generated

subschemas that have an acceptable trade-off between sensitive

attribute protection and target attribute prediction, instead of the

entire database. We conducted experiments on a financial data-

base and an insurance database to show the effectiveness of the

strategy. Our experimental results show that our approach gen-

erates subschemas that maintain high accuracies against the tar-

get attributes, while lowering the predictive capability against

confidential attributes.

Several future directions would be worth investigating. First,

as stated earlier, our approach uses a set of rules built by a clas-

sifier to detect those attributes that are correlated with a sensi-

tive attribute. We aim to investigate other ways to detect such

correlations. For example, it would be interesting to study meth-

ods that are able to directly compute the attribute correlations

across multiple tables effectively, instead of relying on specific

Fig. 3. Number of Subgraphs vs. Length of Join Path.

Fig. 4. Execution time vs. length of join path.
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classification or association analysis algorithms. Second, research

suggests that relations that are closer to the target relation play a

more important role while building an accurate multi-relational

classification model [30]. We intend to integrate these findings

in our further studies.

Finally, many real world databases contain many confidential

attributes, instead of only one. Further studies on extending the

proposed approach in this paper to deal with multiple attributes

would be very useful. For instance, when multiple sensitive

attributes are independent of one another, we may be able to

repeat the TSMC approach and incorporate a subschema’s dif-

ferent sensitivities (against different confidential attributes) in

Equation 1, through, for example, using the maximum value. A

potential problem here is that if the number of confidential

attributes is large, we may have difficulty to find a subschema

that satisfies the protection for all confidential attributes. How-

ever, we may be in a better position to find a good subschema

when considering multiple correlated confidential attributes. In

such a scenario, one of the challenges would be to make use of

the correlations between the multiple confidential attributes. For

instance, one may be able to re-use the results computed for the

previous attribute (attributes), thus speeding up the search pro-

cess.

Our algorithm generalizes to multiple sensitive attributes

with, at most, linear complexity in terms of computational cost.

Let us suppose, for illustration, that we want to add one more

sensitive attribute; the generalization to multiple attributes is

immediate. Two cases need to be considered. That is, the two

attributes are either highly correlated or they are weakly or

uncorrelated. In the first case, one may simply re-use the results

obtained from the calculation associated with the first attribute,

since both attributes are highly correlated. In the second sce-

nario, the calculations are simply repeated for the second

attribute. It follows that the outcomes of both calculations are

independent, since both attributes are statistically independent.

The complexity of such an operation is linear due to the inde-

pendence of the two attributes.
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