
Copyright 2011. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 5, No. 3, September 2011, pp. 197-209

Anonymizing Graphs Against Weight-based Attacks with
Community Preservation

Yidong Li and Hong Shen*

School of Computer Science, University of Adelaide, South Australia, Australia

yi.li@adelaide.edu.au, hong@adelaide.edu.au

Abstract
The increasing popularity of graph data, such as social and online communities, has initiated a prolific research area in knowledge dis-

covery and data mining. As more real-world graphs are released publicly, there is growing concern about privacy breaching for the

entities involved. An adversary may reveal identities of individuals in a published graph, with the topological structure and/or basic

graph properties as background knowledge. Many previous studies addressing such attacks as identity disclosure, however, concen-

trate on preserving privacy in simple graph data only. In this paper, we consider the identity disclosure problem in weighted graphs.

The motivation is that, a weighted graph can introduce much more unique information than its simple version, which makes the disclo-

sure easier. We first formalize a general anonymization model to deal with weight-based attacks. Then two concrete attacks are dis-

cussed based on weight properties of a graph, including the sum and the set of adjacent weights for each vertex. We also propose a

complete solution for the weight anonymization problem to prevent a graph from both attacks. In addition, we also investigate the

impact of the proposed methods on community detection, a very popular application in the graph mining field. Our approaches are

efficient and practical, and have been validated by extensive experiments on both synthetic and real-world datasets.

Category: Smart and intelligent computing

Keywords: Anonymity; Weighted graph; Privacy preserving graph mining; Weight anonymization

1. INTRODUCTION

Many natural and man-made systems are structured in the

form of graphs. Typical examples include communication net-

works, biological systems, social networks and transportation

infrastructures. The increasing popularity of these graph data

has initiated a fertile research area in information extraction and

data mining that benefits various application fields such as soci-

ology, marketing, biomedicine and counterterrorism. However,

as more real world graph data have been made publicly avail-

able, the privacy preservation, which already has a rich body of

research on transactional data [1-4], becomes an important con-

cern associated with graph analysis. In this paper, we focus on

protecting sensitive identities of individuals in a graph from

background knowledge attacks. That is, if certain local knowl-

edge can uniquely identify some vertices in a graph and is

known by an adversary, the privacy of these entities can be

breached, even if the data has been perturbed before publica-

tion.

Some recent studies [5, 6] show that the simple technique of

anonymizing graphs by removing the identities/labels of verti-

ces before publishing the actual graph does not always guaran-

tee privacy. For example, the work in study of Zhou and Pei [7]

identifies neighborhood attacks that an adversary has knowl-

edge about neighbors of a target vertex and the relationship

among the neighbors. Another study [8] discusses a specific

knowledge attack, assuming an adversary has prior knowledge

of the degree of a target vertex. They argue that, if the degree of

a vertex is unique in the degree sequence of all vertices, this

entity can be easily re-identified, even without its original label.

A common character of the studies mentioned above is that

they all concentrate on simple graphs (i.e., undirected, unweighted

Received 01 February 2011, Accepted 20 March 2011

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2011.5.3.197 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 197-209

http://dx.doi.org/10.5626/JCSE.2011.5.3.197 198 Yidong Li and Hong Shen

and loopless graphs) and avoid weighted networks that are often

perceived as being harder to analyze than their unweighted

counterparts are. However, as has long been appreciated, many

networks are intrinsically weighted, their edges having differing

strengths. There may be stronger or weaker social ties between

individuals in a social network. There may be longer or shorter

distances between stations in a transportation network. There

may be more or less bandwidth or data flow between routers/

clients in a communication network. There may be more or less

flux along particular reaction pathways in a metabolic network.

There may be more or less energy or carbon flow between pred-

ator-prey pairs in a food web.

In this paper, we discuss weighted-related properties that

may lead to potential background knowledge attacks in a graph.

Two important properties are introduced here: 1) volume, which

is sum of weights for a node; and 2) histogram, which repre-

sents the neighborhood weight distribution of a node. From

both theoretical and practical views, a weighted graph provides

more unique structural information than a simple graph that

increases the risk of identity disclosure. For example, a real-

world graph, called NetSci, which has 1; 589 nodes and will be

introduced in the experimental section, consists of 1% nodes

with unique degree values but more than 6% with unique vol-

ume values. We will show the details in the experimental part.

Furthermore, many preservation algorithms for simple graphs

may not be extended or adapted to their weighted version. For

instance, Fig. 1 states two weighted graphs, which are 3-degree

anonymous and 4-degree anonymous respectively, according to

the definition in [8]. However the weight values provide some

extra unique information for a vertex, e.g., the volume of the

vertex a is unique in Fig. 1a. In the real world, such information

may be known as background knowledge and used by adversar-

ies for re-identification.

While the privacy preservation has the highest priority in our

discussion, we also consider another aspect, which is to main-

tain the so-called community in graphs. In societies, a commu-

nity can be a variety of group organizations, such as families,

friendship circles or colleagues. In online social networks, a

community can be a virtual interest group. In protein-protein

interaction networks, a community can be a group of proteins

having the same specific function within a cell. As one of the

major features of graphs representing real systems is commu-

nity structure [9], detecting such communities is of great impor-

tance in various disciplines, such as sociology, biology and

computer science. This is usually known as community detec-

tion in the graph clustering area, and has been a vibrant research

field for the last few years [10-14]. Therefore, it is either neces-

sary or practicable to ensure a privacy preservation approach to

maintain the community structure of a published dataset.

A. Our Contributions

- We discuss the identity disclosure problems in weighted

graphs with certain weight properties as background knowl-

edge. Two weight characteristics are considered: 1) volume:

the sum of weights for a vertex; and 2) histogram: the neigh-

borhood weight distribution of a vertex, and we show empiri-

cally how high the disclosure risk is with these weight attacks

to breach real-world graphs.

- We formalize a general model for weighted graph anonymiza-

tion, which is to modify edges and weights in a graph to pre-

vent weight-related attacking.

- We provide a complete solution for the weight anonymization

problem introduced in this paper, and show theoretically and

empirically how the proposed methods perform on both data

privacy and utility.

- We consider the change of graph spectrum as information loss

incurred in graph perturbation, and use the algebraic connec-

tivity as a quantitative metric.

- We also theoretically justify the impact of weight modification

on the graph spectrum.

- We explore the impact of the proposed approaches on commu-

nity detection that is a concrete and popular application in the

field of graph mining and analysis.

The remainder of this paper is organized as follows. Section

II brief overviews the literature on the graph anonymization

problem. In Section III, we formally define a general model for

weighted graph anonymization and provide two concrete cases

of weight-related attacks. We also discuss the use of a graph

spectrum as the information loss during anonymization in this

part. Section IV focuses on methods against both weight

attacks. We present the experimental results in Section V. In

Section VI, we explore the issue of community detection with

graph anonymization. We conclude this paper in Section VII.

II. RELATED WORK

A. Identity Disclosure on Graphs

In recent years, a large number of techniques, such as data

swapping [15], microaggregation [2], and k-anonymization [4,

16, 17], have been proposed for the identity disclosure problem

in relational databases. Most of these fundamental studies are

group-based that means the approaches will partition data

according to a certain metric and generalize/suppress data

tuples in each group. An extensive study can be found in [18].

Hay et al. [5] point out the risk that simply removing the

identifiers (or label) of the nodes does not always guarantee pri-

vacy. They study a spectrum of adversary external information

and its power to re-identify individuals in a social network. Two

types of adversary knowledge are formalized in detail: 1) vertex

refinement queries that reveal the structure of a graph around a

vertex. For a node v, such information includes its label, degree,

the list of its neighbors’ degree, and so on. 2) subgraph knowl-

edge queries, which investigate the uniqueness of a subgraph

Fig. 1. Examples of degree anonymized weighted graph.

Anonymizing Graphs Against Weight-based Attacks with Community Preservation

Yidong Li and Hong Shen 199 http://jcse.kiise.org

around the target node. The above two directions are also

extended by the following studies [7, 8] that we will describe in

the following part. The paper also provides a solution to anony-

mize the social network data based on random perturbation.

The work in [6] describes a family of attacks on a social net-

work whose labels for vertices are replaced with meaningless

unique identifiers. The idea behind these attacks is to create or

find unique subgraphs embedded in an arbitrary network. Then,

adversaries can learn whether edges exist between specific tar-

geted pairs of nodes.

The work in [7] identifies an essential type of privacy attack,

called neighborhood attacks. That is, if an adversary has some

knowledge about the neighbors of a target node and the rela-

tionship among them, it is possible to reidentify the node from a

social network. The authors modelled the k-neighborhood anon-

ymization problem systematically and proposed an anonymiza-

tion approach based on the neighborhood component coding

technique, but admitted that the algorithm would be a computa-

tional serious challenge as the neighborhood size increased. It is

believed that this observation is closely related to the subgraph

knowledge queries discussed in [5].

Liu and Terzi [8] study a specific graph-anonymity model

called k-degree anonymity that prevents the re-identification of

individuals by adversaries with a priori knowledge of the degrees

of certain nodes.

Definition 2.1. (k-degree anonymous [8]) A graph G(V, E) is

k-degree anonymous if each vertex v ∈ V has the same degree

with at least k − 1 other vertices.

They provide a two-step framework for the k-degree ano-

nymity problem: degree anonymization and graph reconstruc-

tion. The first step is solved by a linear-time dynamic programming

algorithm, and the second step is solved by a set of graph con-

struction algorithms that are related to the realizability of degree

sequences. Experiments on a large spectrum of synthetic and

real network datasets demonstrate that their algorithms are effi-

cient and can effectively preserve the graph utility, while satis-

fying k-degree anonymity.

Zheleva and Getoor [19] consider the problem of protecting

sensitive relationships among the individuals in the anonymized

social networks. This is closely related to the link-prediction

problem that has been widely studied in the link mining com-

munity. The work in [20] studies how anonymization algo-

rithms based on randomly adding and removing edges change

certain graph properties. More specifically, they focus on the

change caused in the spectrum of the network.

Liu et al. [21] take weights as consideration for privacy pres-

ervation in social networks. They study situations, such as in a

business transaction network, in which weights are attached to

network edges that are considered confidential. Then, they pro-

vide two perturbation strategies for this application. In particu-

lar, their methods yield an approximate length of the shortest

path, while maintaining the shortest path between selected pairs

of nodes, but also maximize privacy preservation of the original

weights. The research in [22] extends the above work by formu-

lating an abstract model based on linear programming. How-

ever, the objective of their work focuses on maintaining a

certain linear property of a social network by reassigning edge

weights.

B. Community Detection on Graphs

The work in [23] proposes a historically important algorithm

in the field of community detection. The main idea behind is to

first calculate the centrality for all edges and then invoke an

iterative process that in each iteration removes the edge with the

largest centrality and recomputes centralities on the running

graph. A large variety of methods have been since developed

based on the Girvan-Newman algorithm. Tyler et al. [24] pre-

sented a modified version of the algorithm that aims to improve

the speed of the calculation. The work in [25] provides a modi-

fication of the Girvan-Newman algorithm in which vertices,

rather than edges, are removed based on a vertex-based central-

ity metric. In addition, as the Girvan-Newman algorithm is

unable to detect overlapping communities, both studies in [26]

and [27] explore the modified algorithms in which vertices can

be split between communities.

Another popular type of community detection methods is

based on the so-called modularity [28] that is a stopping crite-

rion for the Girvan-Newman algorithm. Since the problem of

modularity optimization has been proved NP-complete [29],

several heuristic algorithms are proposed to find approxima-

tions of the modularity maximum in a reasonable time, which

are based on different techniques, including greedy technique

[24], simulated annealing [30], extremal optimization [31], and

spectral optimization [32]. An extensive study of community

detection can be found in [9] for further reading.

III. PROBLEM DEFINITION

In this section, we first provide some preliminaries and nota-

tion used throughout the paper. Then, a general model is pro-

posed to define the weight anonymization problem (WA) for a

graph. Furthermore, we consider an efficient metric to quantify

the information loss incurred by the graph perturbation and its

relations with other measures in previous studies. Finally, we

discuss two concrete weight-related attacks.

A. Preliminaries and Notations

An undirected and weighted graph G(V, E, W) is specified by

its vertex set V , edge set E, and weight set W. The cardinalities

are |V| = n and |E| = m, respectively. In most studies of graph

theory, each entry in W is represented as a numeric label w(e)

associate with each edge e ∈ E. Deviating from this convention,

this paper considers a vertex-related definition as an alternative.

Definition 3.1. (weight bag) For each vertex vi ∈ V, we define

a weight bag for vi as the sequence of weights on all edges con-

necting vi to other vertices, denoted by wi = [wi1, wi2, …., widi
]

(wi1 ≥ wi2 ≥ … ≥ widi
), where di represents the degree of vi.

A weight bag can be a multiset, since different edges can

have the same weight in real world cases. Then the weight set

can be described as the complete set of weight bags in G, i.e., W

= {wi,…, wn}, where n is the number of vertices. For example,

the weight bag for the vertex b in Fig. 1a is wb = [wbc, wba] = [3,

2] and the weight set for this three-point graph is W = {[2, 2],

[3, 2], [3, 2]}. Although the following studies are restricted to

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 197-209

http://dx.doi.org/10.5626/JCSE.2011.5.3.197 200 Yidong Li and Hong Shen

undirected graphs, most of the results are suitable for directed

cases by selecting edges with vi as either a source or a sink in

Definition 3.1.

In this paper, we allow weights to be integers, rational num-

bers or real numbers but non-negative. Given a graph G' (V, E',

W') perturbed from G, the above constraint requires there are no

negative entries in the perturbed weight set W'.

B. Weight Anonymity: A General Model

In general, a large variety of weight properties derived from

the weight set can be used to identify a vertex. Let f be a func-

tion mapping W P, i.e., P = f(w) w ∈ W. Note it is unneces-

sary for f to be a linear function. Here, we say P is the weight

property corresponding to the function f. Assume that Pi ∈ P is

the weight property for vertex vi. Then, if Pi has the unique

value in P and has been known by an adversary, vi can be suc-

cessfully identified from the graph. Hence, we first introduce

the following term about the k-weight anonymous graph.

Definition 3.2. (k-weight anonymity) A graph G is k-weight

anonymous if for every vertex v, there exist at least k − 1 other

vertices in the graph with the same weight property P ∈ P as v.

Let CA be the cost during weight anonymization and C denote

the information loss incurred in the entire perturbation process.

For a weight property P, we formally propose the weighted

graph anonymization (WGA) problem as follows.

Problem 3.3. (weighted graph anonymization) Given a graph

G(V, E, W) and an integer k, find a k-weight anonymous graph

G'(V, E', W') according to the weight property P, such that both

CA and C = (C; CA) are minimized.

The information loss is a critical measure to quantify the util-

ity of a perturbed graph, and we will introduce efficient metrics

in the next section. Most previous work [9, 21, 22] uses a two-

step strategy that splits the problem into two sub-problems,

called property anonymization and graph reconstruction, to

solve graph perturbation problems. The idea behind this is to

reform the structure of a graph according to either its random-

ized weight matrix or anonymized property sequence. For each

step, the methods are devoted to minimizing the information

loss incurred by perturbation or reconstruction. Such a strategy

is quite attractive for large graph anonymity due to its reason-

able complexity in real applications. Therefore, all methods

proposed in this paper will follow this track.

C. Metrics for Information Loss

From a general view, each privacy preserving approach has

its limitations due to the wide concepts of data privacy and util-

ity, which means it only works efficiently on protecting data

from a certain family of attacks and maintaining pre-specified

data utility. There is no exception here. The task to determine an

efficient measure becomes even more complex in graph analy-

sis due to its topological structure.

Differentiating from some other problems, such as k-ano-

nymity on transactional data, we use a conditional metric C =

(C; CA) to assess the quality of an approach for the WGA prob-

lem. The anonymizing cost CA is usually related to the opera-

tions of anonymization, while C represents one of the real graph

properties that we suppose to preserve. Here, we can only guar-

antee a solution of C to be optimal for WGA with the condition

of certain CA. It can be seen as a trade-off between utility and

efficiency. That is, an anonymizing algorithm becomes too

complex to implement with a real graph property as CA, since it

must construct the adjacency matrix to obtain the real property

at each perturbation step. Intuitively, we expect there exists a

tight and determined relation between CA and C, leading to an

optimal solution in the whole process. However, the difficulty

to find such a relation relies on the selected metrics. The metrics

for both of them can vary within different applications.

1) Anonymizing Cost: The privacy metric for anonymity is

indistinguishing level k in general. Besides the security require-

ments, we also expect the perturbation to have a minor effect on

the original data. As our basic operations for perturbation is to

add, delete or reallocate edges/weights in graphs, the method

for weight anonymization is naturally required to minimize the

changes of weights. Some previous work in [8] quantifies anon-

ymizing cost, using the number of edges changed before and

after graph perturbation. We first consider extending this metric

as anonymizing cost in the WGA problem. Given a sequence of

certain weight property w = [w1, . . . , wn], the anonymizing cost

incurred by property anonymization is mathematically formal-

ized as follows,

CA = (1)

where m is the number of anonymizing groups, gi and repre-

sent the number of objects and the anonymizing object in each

group. Although it is quite simple and intuitive to use CA as the

anonymizing cost incurred in the perturbation, the underlying

relationship between such anonymization cost and the topologi-

cal structure of a graph is still unclear. However, our extensive

experimental results with real-world data have shown its effi-

ciency, which implies underlying relations with real graph prop-

erties.

2) Spectrum-based Information Loss: Our next task is to

define an efficient metric for information loss. In this paper, we

consider a spectrum-based metric derived from the spectral

graph theory. Recall that, the Laplacian matrix of a weighted

graph G(V, E) is defined as L = D − A, where D and A are the

degree matrix and the adjacency matrix respectively. The set of

eigenvalues of L, λ = (λ1, λ2, . . . , λn), is called the spectrum of

G. If the graph only contains one component, we have 0 = λ1 ≤
λ2 ≤ . . . ≤ λn. Many studies [33-35] point out that the spectrum

plays a central role in understanding of graphs, since it is

closely related to most invariants of a graph, such as mean dis-

tance, diameter, connectivity, expanding properties, maximum

cut, isoperimetric number and randomness of the graph. Partic-

ularly, the second smallest eigenvalue λ2, known as algebraic

connectivity, has been discovered in its application to several

difficult problems in graph theory. In this paper, we use the bias

of λ2 to measure the information loss. Let be the second

smallest eigenvalue of the anonymized graph G'. Then, the

information loss C is defined as

→

wij wi
*–

j 1=

gi

∑
i 1=

m

∑

wi
*

λ2

′

Anonymizing Graphs Against Weight-based Attacks with Community Preservation

Yidong Li and Hong Shen 201 http://jcse.kiise.org

C = (2)

Therefore, an anonymizing algorithm aims to find a perturba-

tion to minimize Equation 2, while guaranteeing the privacy of

entities in the graph.

Now, we discuss the relation between CA in Equation 1 and

λ2. The following theorem describes impacts of the weight

modification on the spectrum.

THEOREM 3.4. λ2 ≤ whenever G' is obtained from G by

increasing the weight value on an edge. Similarly, λ2 ≥

whenever G' is obtained from G by decreasing the weight value

on an edge.

The proof of THEOREM 3.4 is omitted here due to the space

limitation. THEOREM 3.4 shows the change of weights can

approximately estimate the bias of λ2, this leads to an efficient

way to develop anonymization algorithms. It is ideal to quantify

the relation between λ2 and the modification of weights with a

determined function λ2 = f(W). However, exploring such a func-

tion is still an open problem in the matrix perturbation theory. In

this paper, we allow single operation only, i.e., either increasing

weight or decreasing weight. With such an assumption, the opti-

mal anonymization problem can be reduced to the problem of

minimizing the weight changes CA in the anonymization progress.

Equation 1 only provides an efficient measure to achieve the

minimal information loss in designing an anonymization algo-

rithm. However, the bias of the spectrum can be influenced by

reconstructing a graph as well. The work in [36] provides theo-

retical analysis of reconstructing a weighted graph from its

spectrum, which maintains the eigenvalues perfectly. However,

the conditions for reconstructability of weighted graphs are only

sufficient and it can be costly to implement. Therefore, we pro-

vide efficient methods for graph construction with the objective

of minimizing the information loss C in a later section.

D. Weight-related Attack: Two Cases

There exist a variety of weight properties in a weighted

graph. Based on the general model for weight anonymity, we

will discuss two types of weight-related attacks and apply the

general model on these anonymization problems.

1) Volume Attack: We first consider a weight property, called

volume, which describes the sum of a weight bag. That is, the

function f = Σ, and for a vertex vi, Pi = wij. Notice that, the

value of the volume is sometimes used as degree in research on

weighted graphs, but we use it separately for a clearer state-

ment. Using si to specifically represent the volume of vi, we can

form a sequence S = [s1, . . . , sn] (s1 ≥ s2 ≥ . . . ≥ sn), where n is

the number of vertices. It is easy to find that, if there exists a

unique si in S and the value is known by an adversary, the entity

represented by vi will be identified from the published graph.

We term this privacy breaching process a volume attack. Corre-

spondingly, we can define k-volume anonymity for a graph as

follows.

Definition 3.5. (k-volume anonymity) A graph G is k-volume

anonymous if for every vertex v ∈ V, there exist at least k − 1

other vertices in the graph with the same volume as v.

For example, the graph (a) in Fig. 1 is 1-volume anonymous,

since S = [5, 5, 4]. The graph (b) is 2-volume anonymous, as S =

[6, 6, 5, 5].

2) Histogram Attack: Another weight-related attack refers to

the histogram of a weight bag. In statistics, a histogram is a

graphical display of tabular frequencies. Let Bi be the set of his-

togram bins for the vertex vi and each bin consists of weights

falling in the bin range. We use Bi = (bi1, bi2, . . . , bim) to repre-

sent the set of bin frequencies for vi, where bij is the number of

elements in the corresponding bin and m is the number of bins.

Here, we assume the partitioning of histogram bins is the same

for all vertices. Then, we can define k-histogram anonymous for

a graph, as follows.

Definition 3.6. (k-histogram anonymity) A graph G is k-his-

togram anonymous if for every node v, there exist at least k−1

other node in the graph with the same histogram as v.

A special case of histogram attack is that weights are all inte-

gers and the bin width in every histogram is 1. Then, the simi-

larity of histograms can be transferred to the similarity of

weight bags. We say two weight bags are equal if and only if

they have the same elements and the same multiplicity for each

element. The graph (a) in Fig. 1 is 1-histogram anonymous as W

= {[3, 2], [3, 2], [2, 2]} and (b) is 2-histogram anonymous as W

= {[3, 3], [3, 3], [3, 2], [3, 2]}.

3) Discussion: It is worth discussing the relationships among

various weight anonymity problems, since this may provide

alternatives to design anonymization algorithms. The degree

anonymity is also considered as a special case of weight ano-

nymity. We have the following proposition.

PROPOSITION 3.7. If a graph G is k-histogram anonymous,

then it is also k1- degree anonymous and k2-volume anonymous,

where k1, k2 ≥ k.

The proof is obvious with the equality property of weight

bags. This proposition shows that an approach for histogram

anonymity achieves degree and volume anonymity at the same

or a higher security level. We have to point out that Proposition

3.7 is just a sufficient condition. That is, degree and volume

anonymity cannot guarantee the same level of histogram ano-

nymity.

IV. HISTOGRAM ANONYMIZATION

In this section, we consider methods to protect a graph from

histogram attack. Based on our general model and the definition

of k-histogram anonymity, the histogram anonymization (HA)

problem is formally defined as follows.

Problem 4.1. (histogram anonymization) Given a weighted

graph G(V, E, W), and an integer k, construct a k-histogram

anonymous graph G'(V, E', W') such that the information loss C

is minimized.

The solution to Problem 4.1 follows the two-step strategy

discussed in the previous section. It first tries to find the optimal

anonymity W' for W with the minimal cost CA, and then con-

λ2 λ2

′
–

λ2

′

λ2

′

Σj 1=

d
i

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 197-209

http://dx.doi.org/10.5626/JCSE.2011.5.3.197 202 Yidong Li and Hong Shen

structs a weighted graph with W' and the original vertex set V.

Now, we introduce algorithms for these steps respectively in the

following two parts.

A. The k-Histogram Anonymization

The first challenge in histogram anonymization is to perform

appropriate data preparation for the calculation of information

loss, since weight bags in a weight set may come in different

sizes. Considering each weight bag as a point in a unified multi-

dimensional space, the preparation procedure is required to

maintain these points as densely as possible. Mathematically,

for a vertex vi, its weight bag wi = [wi1, , widi
] can be seen as

a vector in the di-dimension space, where di is the degree of vt. If

let m = max(di) i ∈ [1, n], we can map all weight bags in W to

the m-dimension space, denoted as Um×n, in which each weight

bag is represented by a column vector with length m. This map-

ping procedure will expand weight bags with di < m by filling

(m − di) zeros.

LEMMA 4.2. Given a graph with a weight set W, the k-weight

anonymization with the lowest cost CA can be achieved if every

column vector in the set U is sorted in descending order.

Proof: Recall that a weight bag is defined as a sorted multi-

set. Let Wp be a weight bag with |Wp| = m and Wq be a weight

bag with |Wq| = m − 1. Assume that Uq and represent the

mapped vectors with and without in descending order respec-

tively.

Let us say Uq = [wq1, , wq(m−1), 0] and = [wq1, . . . , 0,

wq(m−1)]. It is simple to see that . All other

cases of can be justified by iterative process.

Lemma 4.2 is a necessary condition for an anonymization

algorithm to achieve the lowest cost. It implies that, to guaran-

tee the lowest information loss, we have to assign 0s to the end

of weight bags whose sizes are smaller than m. For instance, in

Fig. 1b, if we connect the vertices a and d with weight 1, we

have the weight set as W = {[3, 2, 1], [3, 2], [3, 3], [3, 3, 1]}.

Then, this set can be mapped to a 3-dimension space as U = [3,

2, 1; 3, 2, 0; 3, 3, 0; 3, 3, 1]T.

Another issue in the HA problem is to determine the anony-

mous object for data generalization in each anonymous group.

Generally, these objects are expected to be chosen from the

original dataset. However, this constraint is too strict for histo-

gram anonymization, as the unique weight operation is allowed

only so far. Here, we relax the constraint to allow the method

building the ‘largest’ vector as the anonymous object. That is,

for a group gi = (u1, , uq), we generate a vector as its

anonymous object, where = maxj(uij). For example, given U

= [3, 2, 1; 3, 2, 1; 2, 2, 1; 3, 3, 0]T, a vector u* = [3, 3, 1]T is

formed as the anonymous object for U.

The complexity of this problem has not been assessed, as far

as we know. However, the work in [37] discusses a similar

problem with the u* being the mean vector of a group that has

been proven NP-hard. Although it is unclear whether the HA

problem can be inducted from this existing problem, we can

prove its NP-hardness using a similar induction process, omit-

ted here due to space limitation. Therefore, we describe an effi-

cient heuristic algorithm as a solution in Algorithm 1.

The computational complexity of Algorithm 1 is O(n2log).

Here, we form a symmetric n × n distance matrix in which each

entry represents the Euclidean distance between two weight

bags in U. This reduces the complexity of the initialization step

to linear. The algorithm introduces O(n2) operations to calculate

all new distances among groups in each recursive step. Finally,

there are log recursions due to the group merging. Therefore,

the total complexity is O(n2
log).

B. Graph Construction with an Anonymized
Weight Set

Graph construction is the second stage of the two-step strat-

egy that aims to construct a graph with an anonymized weight

set. The graph construction based on a specified degree or vol-

ume sequence has been extensively studied in previous work

[38-40]. Although the k-histogram anonymity guarantees the k-

volume anonymity, the realizability of volume sequences is

insufficient for that of weight sets. Therefore, by a given weight

set W, we provide a Weighted Graph Construction (WGC)

method based on edge removal in Algorithm 2.

The WGC algorithm takes the specified weight set W as

inputs and returns either a successfully constructed graph or

“Fail”, meaning W is not realizable. Step 2 is a basic condition

to ensure the total degree of the graph is even. For a vertex,

Steps from 6 to 9 describe an efficient procedure to remove

edges by matching each element in its weight bag. Specifically,

for a picked vertex vr, when it chooses a candidate vs to join, the

procedure has to ensure ws contains an element wsj that appears

in wr as well, i.e., wsj = wri. The lay-off procedure for sequence

realizability only guarantees the sum of weights and the combi-

nation of edge connections can vary. The constraint introduced

by histogram anonymity can be too strict to satisfy. This may

break the weight anonymity but significantly increase the suc-

cess rate of constructing a graph. In addition, it is still impossi-

ble for an adversary to identify an entity, since the weight will

Uq
′

Uq
′

Up Uq– Up Uq
′–<

Uq
′

ui
*

ui j,
*

n

k

n

k

n

k

Algorithm 1. Histogram anonymization algorithm

Input: A weight set W and an integer k.

Output: An anonymized weight set W'.

1: Initialization.

1.1 map W to the m-dimension space as U;

1.2 find vs and vt in V with the most distance in U;

1.3 form groups gs and gt containing vs and vt with their

k − 1 closest vertices respectively;

1.4 determine anonymous objects os and ot and compute

information loss for each group.

2: Recursion.

2.1 set all remaining vertices as 1-element group and

initial the anonymous object as itself;

2.2 merge two groups with the lowest information loss;

2.3 re-calculate anonymous objects for each group;

2.4 go to 2.2 until every vertex is assigned to a group

with size (k, 2k).

3: Perturbation.

3.1 replace elements in each group by an anonymous

object;

3.2 merge all groups as W' and return.

Anonymizing Graphs Against Weight-based Attacks with Community Preservation

Yidong Li and Hong Shen 203 http://jcse.kiise.org

be increased anyway. In practice, we can relax the condition wsj

= wri as |wsj − wri| < β, where β‚ is a specified threshold. As we

show in our experimental evaluation, the constructing algo-

rithms can successfully generate anonymized graphs in most

cases with a small value of β. Step 11 is to ensure the connectiv-

ity of the output graph. That is, if the construction results in a

graph with several components, it will bridge them by swapping

certain edges. For example, assuming that (vi, vj) ∈ and (vr, v)

∈ with wij = wrs, where G' = and = Φ, the

graph G' can achieve complete connectivity by swapping (vi, vj)

and (vr, vs) as (vi, vr) and (vj, vs). If the algorithm terminates and

outputs a graph, then this graph has the specified weight set W.

The computational complexity of Algorithm 2 is O(n2
m

2),

where n is the number of vertices and m is the maximal degree

for all vertices. For each vertex vi, there are maximal m edges

connecting vi with other nodes. For each edge, the worst case is

traversing all remaining vertices to find vs, which is n × m

times. As there are n vertices, the total complexity is O(n2m2).

Notice that, Step 7 makes a trade-off between efficiency and

accuracy in Algorithm 2, as there may exist a group of vs and

this may result in various information losses by connecting vr to

different vs. We provide a sort-then-switch procedure on the

edge set of a constructed graph to optimize the information loss

incurred in graph construction (the implementation of this pro-

cedure is omitted here). The procedure takes a constructed

graph G and the eigenvalue λ2 computed from the original

graph. The idea is to determine the range of switching candi-

dates by sorting the edge set first, and then switch edges to find

the connections leading to the closest eigenvalue to λ2. The

complexity of this procedure is O(n3m2). in the worst case,

where n and m are the sizes of V and E, respectively, while the

major cost is to calculate the eigenvalue in each iteration with

the standard eigen decomposition taking O(n3) operations. How-

ever, it can be significantly improved using eigenspace approxi-

mation techniques, such as the Lanczos algorithm and its

variation [41]. Moreover, let p be the size of the switching set

with maximal candidates. Our experiments show that the value

p is much less than m in general; this means the inner iteration

in Step 5 only has a small number for real graphs. Therefore,

Algorithm 2 is also efficient to work on large scale graph data

with the sort-then-switch procedure.

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed

graph anonymization algorithms. The experiments are con-

ducted on a 2.16 GHz Intel Core 2 Duo Mac with 4 GB of 667

MHz DDR2 SDRAM running the Macintosh OS X 10.5.8 oper-

ating system. All algorithms are implemented using Matlab 7.0.

A. Datasets

We use both synthetic and real-world datasets. For experi-

ments with synthetic data, we generate a random weighted

graph Gr with n nodes randomly connected to each other with a

specified probability p. Here, we set n = 2; 000 and p = 0.5. For

each edge, the model assigns a random integer weight in the

range [1, 100].

We also use two real-world graph datasets, named BkFrat

and NetSci, respectively. All these graphs are weighted and

undirected. The BkFrat graph [42] concerns interactions among

students living in a fraternity at a West Virginia college. The

graph contains 58 nodes with all integer weights in the range of

[0, 51]. The NetSci graph [10] contains a coauthorship network

of scientists working on network theory and experiments.

The version given here consists of 1; 589 scientists and

assigns real weights as described in [43]. All the testing data

have been simply generalized by removing all real labels for

their vertices. All the real-world graph datasets are available at

http://www-personal.umich.edu/~mejn/netdata/.

B. Weight Attacks on Real-World Data

Our first experiment is to show how possible weight attacks

may occur on realworld graphs. We consider both volume

attack and histogram attack, and provide results of degree attack

as a comparison. Table 1 shows our results. The parameter α is

a threshold to assess a breach. That is, while the number of ver-

tices sharing the same value of a weight property is no larger

than α, these vertices are considered to be disclosed. It clearly

shows that weight attacks are a real issue for graph data publish-

ing. All testing datasets have relatively high risk of entity dis-

closure. For BkFrat data, the success rate of volume attack with

α = 1 is as high as 93%, and even as high as 98% for histogram

attack, implying that most of its vertices can be uniquely identi-

fied. In addition, the disclosure risk grows quite fast as α

increases. For example, the success rate of volume attack on the

NetSci dataset increases nearly 10% with α = 10 than that with

α = 1.

EG
1
′

EG
2
′ G'1∪ G'2 G'1

∪

G'2

Algorithm 2 Weighted graph construction algorithm

Input: A weight set W.

Output: A graph G(V, E, W) or “Fail” if the graph cannot be

constructed.

1: V ← {v1, . . . , vn}, E← , V'← ;

2: if Σi di is odd then

3: return “Fail”;

4: while W consists of non-zero elements do

5: pick a random vertex vr with wr ≠ 0 and V' ← vr;

6: for i ← 1 to dr do

7: select vs ∈ V V' where is minimal;

8: join (vr, vs) as an edge with max(wri, wsj);

9: E ← E (vi, vj), V' ← V' vs, wri, wsj ← 0;

10: V ← V vr;

11: amend the connectivity of G';

12: return G(V, E, W).

0 0

 wsj wri–

∪ ∪

∪

Table 1. Weight attacks on real-world data

α = 1 α = 5 α = 10

DA VA HA DA VA HA DA VA HA

BkFrat 22.41 93.10 98.12 - - - - - -

NetSci 0.25 3.84 6.48 0.94 7.55 21.52 3.02 11.01 28.63

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 197-209

http://dx.doi.org/10.5626/JCSE.2011.5.3.197 204 Yidong Li and Hong Shen

Moreover, the results show that weight attacks have much

higher success rate to breach a dataset than degree attack. This

means such attacks are more practical in real-world scenarios.

In addition, both weight attacks maintain similar success rates,

while the impact of degree attack is decreased significantly, as

the data size increased. The result for NetSci data shows there

are 11:01% vertices with high disclosure risk, as α = 10 for vol-

ume attack. That is, around 180 entities have the possibility of

being identified. However, the number is only 46 for a degree

attack.

C. Information Loss by Weight Anonymization

In this section, we assess the qualitative performance of

information loss incurred by applying histogram anonymiza-

tion. As a comparison, we also implement a greedy anonymiza-

tion algorithm for volume attack, termed GreedyVA, modified

from degree anonymization [8] by replacing the degree sequence

with volume sequence.

The graphs in Fig. 2 describe the relations between anony-

mization cost CA and various k for the RandGraph, BkFrat, and

NetSci datasets, respectively. The results show that the anony-

mization costs increase slowly, while k is not large (e.g., k < 20

in RandGraph or k < 50 in NetSci) for both anonymization algo-

rithms. In addition, we note that the HA results in a bigger cost,

as expected, than the GreedyVA, in all cases. However, the rela-

tive differences are much smaller in real-world data than in the

synthetic graph.

D. Information Loss by Graph Construction

1) Impacts on Graph Spectrum: We evaluate and compare

the information loss for the complete histogram anonymization.

Fig. 3 summarizes the impacts on the spectrum λ2 on the Y-axis,

varying k for the testing datasets. Two construction methods are

compared here: WGC (HA-WGC) and WGC with the sort-then-

switch procedure (HA-WGCS). From the plots, we can observe

the sort-then-switch procedure can significantly improve the

utility performance of histogram anonymization. For example,

in RandGraph, such a procedure reduces the bias of information

loss from 1.4 to 0.6 for k = 250. The gap is insignificant for

NetSci compared to other data, and it is not obvious to decide

on the major reason.

2) Impacts on Real Graph Characteristics. As mentioned

above, the spectrum of a graph has close relations with many

real graph characteristics. In this section, we evaluate the infor-

mation loss based on real graph characteristics of the test data

with the algorithms of HA-WGC and HA-WGCS. We focus on

two of the most robust metrics of network topology. The first is

the global clustering coefficient that is a measure of the degree

to which nodes in a graph tend to cluster together. A generalized

clustering coefficient is formally defined in [44] as

Cc =

where ω∆ is the total value of triangles and ω3 is the total value

ω∆

ω3

Fig. 2. The relation between CA and k.

Fig. 3. The relation between C and k.

Anonymizing Graphs Against Weight-based Attacks with Community Preservation

Yidong Li and Hong Shen 205 http://jcse.kiise.org

of triplets. In addition, we define the value of a triplet as the

geometric mean of the weights of ties. The second one is the

weighted average path length, Ca, this is defined as the average

cost of steps along the shortest paths for all possible pairs of

network nodes.

Figs. 4 and 5 show the relative changes of the real graph

properties Cc and Ca with HA-WGC and HA-WGCS approaches

by varying k. In each figure, a constant line appears to the prop-

erty value of the original graph, which is unaffected by the

value of k. As expected, the anonymization process decreases

both graph properties, since new edges and weights are

increased. The results show that HAWGCS maintains both real

graph properties much better than does HA-WGC; this corre-

sponds to the impact on the spectrum. In addition, it is easy to

observe that HAWGCS can lead to very small bias of property

values from their original values in both cases.

VI. EXTENSION: COMMUNITY PRESERVATION

So far, we have extensively explored the problem of privacy

preservation on weighted graphs against weight-related attacks.

The theoretical and experimental results show that our algo-

rithms perform effectively on not only protecting graphs from

identity disclosure, but also maintaining elementary graph prop-

erties, such as spectrum, clustering coefficient, and average path

length. Such utility preservation can guarantee the data quality

for statistical analysis applications. However, it is poor in

answering the following question: how the proposed methods

will affect data quality for data mining analysis.

In this section, we discuss how to extend our approaches to

ensure the quality of graph clustering with published data. This

is known as community detection in the related field. Instead of

providing a comprehensive solution for privacy preserving

graph mining, our intention is just to show that the proposed

methods can be used to solve concrete data mining problems

with only slight modification.

A. Communities

According to the basic preliminaries in Section III-A, we can

introduce notation for community description. A natural

approach for graph clustering is based on the concept of graph

cut. In graph theory, a cut of a graph G(V, E, W) is a proper par-

tition of the vertices of a graph into two disjoint subsets. The

cut-set of the cut is the subset of edges S E whose end points

are in different subsets of the partition. Edges are said to be

crossing the cut if they are in its cut-set. The weight of a cut is

the sum of the weights of all edges in S. A minimum cut of G is

a cut of minimum weight. The weight of a minimum cut is

called edge connectivity of G and denoted by sG. A cut and its

complement can naturally be identified with each other.

Then, we can initially introduce a popular definition of com-

munity based on edge connectivity, as follows:

Definition 6.1. (community [12]) Let G(V, E, W) be a graph

and H G a subgraph. A community generated by H is a sub-

graph C of G, such that

(1) H C,

(2) sC ≥ sH' for each subgraph H' G with H H',

 ⊂

⊆

⊆
⊆ ⊆

Fig. 4. The relation between CC and k.

Fig. 5. The relation between Ca and k.

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 197-209

http://dx.doi.org/10.5626/JCSE.2011.5.3.197 206 Yidong Li and Hong Shen

(3) H' C for each subgraph H' G with H H'and sC = sH'.

The above definition interprets a community as the largest

subgraph of maximal edge connectivity among all subgraphs of

G containing H. The family of all communities of G is denoted

by OG. Then, our objective is to minimize the change of OG.

That is, an anonymized graph G' is required to maintain the sim-

ilar communities as the original graph.

B. Utility Metrics

Appropriate metrics need to be defined in advance to quan-

tify the information loss of graph anonymization on community

detection. We first consider an intuitive metric, termed intra-

group error, which records the local information loss. Let a

matrix An×n present the pair-wise relations of vertices according

to a community set O, where aij = 1 if vertices vi and vj belong to

the same community and aij = 0 otherwise. Then, assuming OG

and OG' are generated by G and G' respectively, the intra-group

error is defined as,

ZH = , (3)

where is the corresponding entry of aij in A'. This metric

describes the direct difference in each community with a very

easily understood concept.

Another important metric for community detection is modu-

larity, known as a global quality function to identify good parti-

tions [9]. One of the most popular concepts of modularity is

proposed by Newman [45]. It is based on the idea that a random

graph is not expected to have a cluster structure, so the possible

existence of clusters is revealed by the comparison between the

density of edges in a subgraph and the density one would expect

to have in the subgraph, if the vertices of the graph were

attached, regardless of community structure. This expected

edge density depends on the chosen null model, i.e. a copy of

the original graph keeping some of its structural properties but

without community structure. Mathematically, the modularity

M of a partition of a graph into clusters is

M = , (4)

where NG is the number of communities, L is the number of

edges in the graph, lC is the number of edges between vertices in

community C, and dC is the sum of the degrees of the nodes in

C. It is clear that is the ratio of edges inside community C,

and approximates the ratio of edges that one would expect

to have inside the community from chance alone. Let MG and

MG' be the modularity derived from G and G' respectively.

Then, we can define the modularity bias as information loss:

ZM = . (5)

C. A Community Preserving Procedure

In this part, we provide a community preservation procedure

aiming to minimize the change of the community set OG. Our

main idea is to first assign a two-way label for each vertex v ∈ V

in G(V, E, W) according to the community and the min-cut that

contains it. Then, we perform vertex addition or deletion only in

its incident domain(s). For example, assuming that a graph G

has two non-overlapping communities C1 and C2 with the min-

cut S, a label (C1, Sv) for a vertex v ∈ V implies v ∈ C1 and v ∈
Sv. We also use S0 as a virtual set to denote a vertex does not

appear in any min-cuts. Therefore, in both graph construction

algorithms, we can perform the selection of vs within the

domain in which the elements have the same label. Apparently,

this procedure is application-oriented, since a number of algo-

rithms exist for community detection. However, this limitation

can be released in the real-world applications, in which the data

publisher can make consistent standards on the methods of

community detection with data users.

D. Experimental Results

In this section, we evaluate the impact of graph anonymiza-

tion on community detection in terms of the proposed metrics.

The experimental setup and testing data are the same as that in

Section V.

1) Intra-group Error Z
H
: We first assess the intra-group

error defined in Equation 3 for graph anonymization. We com-

pare two approaches: the basic HA-WGCS algorithm and the

HA-WGCS algorithm with the community preserving proce-

dure (HA-CP).

Fig. 6 summarizes the intra-group error ZH on the Y-axis

with varying k for the testing datasets. It is obvious that ZH is

monotonically increasing with k for all testing cases. Therein,

the HA-CP approach outshines the comparison in all plots. The

results show HA-CP can maintain significantly better graph

clustering than the method that does not consider community

⊆ ⊆ ⊆

1

V
2

-------- aij aij

′
–

j 1=

n

∑
i 1=

n

∑

aij

′

lC
L

dC

2L
------⎝ ⎠

⎛ ⎞
2

–⎝ ⎠
⎛ ⎞

g 1=

N
G

∑

lC
L

dC

2L

⎝ ⎠
⎛ ⎞

2

MG MG'–

MG

Fig. 6. The relation between ZH and k.

Anonymizing Graphs Against Weight-based Attacks with Community Preservation

Yidong Li and Hong Shen 207 http://jcse.kiise.org

preservation during the perturbation process. In addition, it

reveals that this method can still maintain a relatively low infor-

mation loss, even for a large k. That is, the proposed approach

can better preserve the utility without sacrificing much privacy

protection.

2) Modularity Bias Z
M

: The second experiment explore the

relationship between the modularity bias defined in Equation 4

and k. Fig. 7 shows the relative changes of ZM with HA-CP and

HA-WGCS by varying k. The modularity bias increases as k

increases that follows the similar trend of ZH. However, the gra-

dients are not as steep as that of ZH, especially when k is not

large. This implies that the impact of perturbation on modularity

is insignificant as the intra-group error, as ZM is a global mea-

surement. In addition, HA-CP performs much better than HA-

WGCS in all cases, as expected. Moreover, the BkFrat data

have the smallest difference, especially when k is not large (< 10).

The reason for this is still unclear and we suppose it is related to

certain structural properties of the dataset itself.

It is clear that the community preservation scheme can sig-

nificantly improve the quality of community detection. How-

ever, in all experiments, we can see that HA-WGCS also has

reasonable performance on community preservation, when the

privacy level is not too high. This implies that in the real-world

scenarios, HAWGCS is also practicable.

VII. CONCLUSIONS

In this paper, we discussed a class of important background

knowledge attacks in a weighted graph. We provided a general

model for the weight anonymization problem to defend against

weight-related attacks. As a proof of concept, we considered the

k-volume anonymity and the k-histogram anonymity as two

cases that could occur in the real-world privacy graph data pub-

lication. We provide a complete solution to achieve both vol-

ume anonymity and histogram anonymity using the graph

spectrum as an effective metric for information loss. We also

analyzed the complexity of the models, and experimentally val-

idate our analysis using both synthetic and real-world weighted

graphs. Finally, we extend our work to preserve the quality of

community detection that is a popular application in the graph

mining field.

Many issues of this work need that to be addressed clearly

merit further research. As a NP-hard problem, it is worth devel-

oping approximation algorithms for the histogram anonymiza-

tion problem. Also, if we allow random weight modification

(increment and decrement), the impact on graph spectrum has to

be reconsidered. In addition, this paper only evaluated the clus-

tering coefficient and average path length as real-graph proper-

ties, and the affect on other topological structures is still

unclear.

REFERENCES

1. R. Agrawal and R. Srikant, “Privacy-preserving data mining,”

ACM SIGMOD International Conference on Management of

Data, Dallas, TX, 2000, pp. 439-450.

2. J. Domingo-Ferrer and J. M. Mateo-Sanz, “Practical data-ori-

ented microaggregation for statistical disclosure control,” IEEE

Transactions on Knowledge and Data Engineering, vol. 14, no.

1, pp. 189-201, 2002.

3. K. Liu, H. Kargupta, and J. Ryan, “Random projection-based

multiplicative data perturbation for privacy preserving distrib-

uted data mining,” IEEE Transactions on Knowledge and Data

Engineering, vol. 18, no. 1, pp. 92-106, 2006.

4. L. Sweeney, “K-anonymity: a model for protecting privacy,”

International Journal of Uncertainty, Fuzziness and Knowlege-

Based Systems, vol. 10, no. 5, pp. 557-570, 2002.

5. M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava, Anon-

ymizing Social Networks. Technical Report No. 07-19, Amherst,

MA: University of Massachusetts Amherst, Mar. 2007.

6. L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou

r3579x?: anonymized social networks, hidden patterns, and struc-

tural steganography,” Proceedings of the 16th International

World Wide Web Conference, Banff, Canada, 2007, pp. 181-190.

7. B. Zhou and J. Pei, “Preserving privacy in social networks

against neighborhood attacks,” Proceedings of the 24th Interna-

tional Conference on Data Engineering, Cancun, Mexico, 2008,

pp. 506-515.

8. K. Liu and E. Terzi, “Towards identity anonymization on

graphs,” ACM SIGMOD International Conference on Manage-

ment of Data, Vancouver, Canada, 2008, pp. 93-106.

9. S. Fortunato, “Community detection in graphs,” Physics Reports,

vol. 486, no. 3-5, pp. 75-174, 2010.

10. M. E. J. Newman, “Finding community structure in networks

using the eigenvectors of matrices,” Physical Review E: Statisti-

cal, Nonlinear, and Soft Matter Physics, vol. 74, no. 3, pp.

036104, 2006.

Fig. 7. The relation between ZM and k.

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 197-209

http://dx.doi.org/10.5626/JCSE.2011.5.3.197 208 Yidong Li and Hong Shen

11. Z. Li, S. Zhang, R. S. Wang, X. S. Zhang, and L. Chen, “Quanti-

tative function for community detection,” Physical Review E:

Statistical, Nonlinear, and Soft Matter Physics, vol. 77, no. 3, pp.

036109, 2008.

12. M. Brinkmeier, S. Recknagel, and J. Werner, “Communities in

graphs and hypergraphs,” Proceedings of the 16th ACM Confer-

ence on Information and Knowledge Management, Lisboa, Portu-

gal, 2007, pp. 869-872.

13. V. A. Traag and J. Bruggeman, “Community detection in net-

works with positive and negative links,” Physical Review E: Sta-

tistical, Nonlinear, and Soft Matter Physics, vol. 80, no. 3, pp.

036115, 2009.

14. A. Lancichinetti and S. Fortunato, “Community detection algo-

rithms: a comparative analysis,” Physical Review E: Statistical,

Nonlinear, and Soft Matter Physics, vol. 80, no. 5, pp. 056117,

2009.

15. K. Muralidhar and R. Sarathy, “Data shuffling: a new masking

approach for numerical data,” Management Science, vol. 52, no.

5, pp. 658-670, May 2006.

16. A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubra-

maniam, “L-diversity: privacy beyond k-anonymity,” ACM

Transactions on Knowledge Discovery from Data, vol. 1, no. 1,

pp. Article 3, Mar. 2007.

17. N. Li, T. Li, and S. Venkatasubramanian, “T-closeness: privacy

beyond k-anonymity and l-diversity,” Proceedings of the 23rd

International Conference on Data Engineering, Istanbul, Turkey,

2007, pp. 106-115.

18. C. C. Aggarwal and P. S. Yu, Privacy-Preserving Data Mining:

Models and Algorithms, New York: Springer, 2008.

19. E. Zheleva and L. Getoor, “Preserving the privacy of sensitive

relationships in graph data,” Proceedings of the 1st ACM

SIGKDD International Conference on Privacy, Security, and

Trust in KDD, San Jose, CA, 2008.

20. X. Ying and X. Wu, “Randomizing social networks: a spectrum

preserving approach,” The 8th SIAM International Conference on

Data Mining, Atlanta, GA, 2008, pp. 739-750.

21. L. Liu, J. Wang, J. Liu, and J. Zhang, “Privacy preservation in

social networks with sensitive edge weights,” The 9th SIAM

International Conference on Data Mining, Sparks, NV, 2009, pp.

949-960.

22. S. Das, O. Egecioglu, and A. El Abbadi, “Anonymizing weighted

social network graphs,” Proceedings of the 26th International

Conference on Data Engineering, Long Beach, CA, 2010, pp.

904-907.

23. M. Girvan and M. E. J. Newman, “Community structure in social

and biological networks,” Proceedings of the National Academy

of Sciences of the United States of America, vol. 99, no. 12, pp.

7821-7826, Jun. 2002.

24. J. R. Tyler, D. M. Wilkinson, and B. A. Huberman, “Email as

spectroscopy: automated discovery of community structure

within organizations,” Communities and Technologies: Proceed-

ings of the First International Conference on Communities and

Technologies, C & T 2003, M. Huysman, E. Wenger, and V.

Wulf, Eds., Dordrecht: Kluwer Academic Publishers, 2003.

25. P. Holme, M. Huss, and H. Jeong, “Subnetwork hierarchies of

biochemical pathways,” Bioinformatics, vol. 19, no. 4, pp. 532-

538, 2003.

26. J. W. Pinney and D. R. Westhead, “Betweenness-based decompo-

sition methods for social and biological networks,” Interdiscipli-

nary Statistics and Bioinformatics, S. Barber, P. Baxter, K.

Mardia, and R. Walls, Eds., Leeds, UK: Leeds University Press,

2006, pp. 87-90.

27. S. Gregory, “An algorithm to find overlapping community struc-

ture in networks,” Proceedings of the 11th European Conference

on Principles and Practice of Knowledge Discovery in Data-

bases, Warsaw, Poland, 2007, pp. 91-102.

28. M. E. J. Newman and M. Girvan, “Finding and evaluating com-

munity structure in networks,” Physical Review E: Statistical,

Nonlinear, and Soft Matter Physics, vol. 69, no. 2, pp. 026113,

2004.

29. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z.

Nikolski, and D. Wagner, On modularity-NP-completeness and

beyond, Karlsruhe: Universitat Karlsruhe Fakultat fur Informa-

tik, 2006.

30. R. Guimera and L. A. N. Amaral, “Functional cartography of

complex metabolic networks,” Nature, vol. 433, no. 7028, pp.

895-900, 2005.

31. J. Duch and A. Arenas, “Community detection in complex net-

works using extremal optimization,” Physical Review E: Statisti-

cal, Nonlinear, and Soft Matter Physics, vol. 72, no. 2, pp.

027104, 2005.

32. Y. Sun, B. Danila, K. Josic, and K. E. Bassler, “Improved com-

munity structure detection using a modified fine-tuning strat-

egy,” EPL (Europhysics Letters), vol. 86, no. 2, pp. 28004, 2009.

33. B. Mohar, “The laplacian spectrum of graphs,” Graph Theory,

Combinatorics, and Applications, Y. Alavi, G. Chartrand, O. R.

Oellermann, and A. J. Schwenk, Eds., New York: Wiley, 1991,

pp. 871-898.

34. M. Fiedler, “Laplacian of graphs and algebraic connectivity,”

Combinatorics and Graph Theory, Z. Skupien and M. Borow-

iecki, Eds., Warszawa, Poland: PWN-Polish Scientific Publish-

ers, 1989, pp. 57-70.

35. F. R. K. Chung, Spectral Graph Theory, Providence, RI: Ameri-

can Mathematical Society, 1997.

36. L. Halbeisen and N. Hungerbühler, “Reconstruction of weighted

graphs by their spectrum,” European Journal of Combinatorics,

vol. 21, no. 5, pp. 641-650, 2000.

37. A. Oganian and J. Domingo-Ferrer, “On the complexity of opti-

mal microaggregation for statistical disclosure control,” Statisti-

cal Journal of the United Nations Economic Commission for

Europe, vol. 18, no. 4, pp. 345-353, 2001.

38. P. Erdos and T. Gallai, “Graphs with prescribed degrees of verti-

ces,” Matematikai Lapok, vol. 11, pp. 264-274, 1960.

39. S. L. Hakimi, “On realizability of a set of integers as degrees of

the vertices of a linear graph I,” SIAM Journal on Applied Math-

ematics, vol. 10, no. 3, pp. 496-506, 1962.

40. F. Boesch and F. Harary, “Line removal algorithms for graphs

and their degree lists,” IEEE Transactions on Circuits Systems,

vol. CAS-23, no. 12, pp. 778-782, 1976.

41. G. H. Golub and C. F. Van Loan, Matrix Computations, Balti-

more, MD: Johns Hopkins University Press, 1983.

42. H. R. Bernard, P. D. Killlworth, and L. Sailer, “Informant accu-

racy in social network data IV: a comparison of clique-level

structure in behavioral and cognitive network data,” Social Net-

works, vol. 2, pp. 191-218, 1979-80.

43. M. E. Newman, “The structure of scientific collaboration net-

works,” Proceedings of the National Academy of Sciences of the

United States of America, vol. 98, no. 2, pp. 404-409, Jan. 2001.

Anonymizing Graphs Against Weight-based Attacks with Community Preservation

Yidong Li and Hong Shen 209 http://jcse.kiise.org

44. T. Opsahl and P. Panzarasa, “Clustering in weighted networks,”

Social Networks, vol. 31, no. 2, pp. 155-163, 2009.

45. M. E. J. Newman, “Analysis of weighted networks,” Physical

Review E: Statistical, Nonlinear, and Soft Matter Physics, vol.

70, no. 5, pp. 056131, 2004.

Hong Shen

Hong Shen received the BE degree from Beijing University of Science and Technology, the ME degree from the
University of Science and Technology of China, and the PhLic and PhD degrees from Abo Akademi University, Finland,
all in computer science. He is a professor (chair) of computer science in the School of Computer Science, University of
Adelaide, South Australia. With main research interests in parallel and distributed computing, algorithms, data mining,
high-performance networks, and multimedia systems, he has published more than 200 papers, including more than
100 papers in international journals, such as a variety of the IEEE and the ACM transactions. He serves on the editorial
boards of several journals.

Yidong Li

Yidong Li received the BS degree from Beijing Jiaotong University, the MS and PhD degrees from the University of
Adelaide, South Australia. He is currently a lecturer in the School of Computer Science, Beijing Jiaotong University,
China. His research interests include privacy preservation data analysis, graph/social network analysis, web mining, and
distributed computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

