DOI QR코드

DOI QR Code

Direct effect of protein kinase C inhibitors on cardiovascular ion channels

  • Son, Youn-Kyoung (Department of Physiology, Kangwon National University School of Medicine) ;
  • Hong, Da-Hye (Department of Physiology, Kangwon National University School of Medicine) ;
  • Kim, Dae-Joong (Department of Anatomy and Cell Biology, Kangwon National University School of Medicine) ;
  • Firth, Amy L. (The Salk Institute of Biological Studies) ;
  • Park, Won-Sun (Department of Physiology, Kangwon National University School of Medicine)
  • Received : 2011.09.02
  • Published : 2011.09.30

Abstract

Protein kinase C (PKC) is a central enzyme that modulates numerous biological functions. For this reason, specific PKC inhibitors/activators are required to study PKC-related signaling mechanisms. To date, although many PKC inhibitors have been developed, they are limited by poor selectivity and nonspecificity. In this review, we focus on the nonspecific actions of PKC inhibitors on cardiovascular ion channels in addition to their PKC-inhibiting functions. The aim of this paper is to urge caution when using PKC inhibitors to block PKC function. This information may help to better understand PKC-related physiological/biochemical studies.

Keywords

References

  1. Divecha, N. and Irvine, R. F. (1995) Phospholipid signaling. Cell 80, 269-278. https://doi.org/10.1016/0092-8674(95)90409-3
  2. Nishizuka, Y. (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB. J. 9, 484-496.
  3. Tamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M. and Tomita, F. (1986) Staurosporine, a potent inhibitor of phospholipid/$Ca^{2+}$ dependent protein kinase. Biochem. Biophys. Res. Commun. 135, 397-402. https://doi.org/10.1016/0006-291X(86)90008-2
  4. Toullec, D., Pianetti, P., Coste, H., Bellevergue, P., Grand-Perret, T., Ajakane, M., Baudet, V., Boissin, P., Boursier, E., Loriolle, F., Duhamel, L., Charon, D. and Kirilovsky, J. (1991) The bisindolylmaleimide GF 109203X is potent and selective inhibitor of protein kinase C. J. Biol. Chem. 266, 15771-15781.
  5. Roffey, J., Rosse, C., Linch, M., Hilbbert, A., McDonald, N. Q. and Parker, P. J. (2009) Protein kinase C intervention: the state of play. Curr. Opin. Cell Biol. 21, 268-279. https://doi.org/10.1016/j.ceb.2009.01.019
  6. Furusaki, A., Hashiba, N., Matsumoto, T., Hirano, A., Iwai, Y. and Omura, S. (1978) X-Ray crystal structure of staurosporine: a new alkaloid from a Streptomyces strain. J. Chem. Soc. Chem. Commun. 18, 800-801.
  7. Meggio, F., Donella Deana, A., Ruzzene, M., Brunati, A. M., Cesaro, L., Guerra, B., Meyer, T., Mett, H., Fabbro, D., Furet, P., Dobrowolska, G. and Pinna, L. A. (1995) Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur. J. Biochem. 234, 317-322. https://doi.org/10.1111/j.1432-1033.1995.317_c.x
  8. Jirousek, M. R., Giling, J. R., Gonzalez, C. M., Heath, W. F., McDonald, J. H. 3rd, Neel, D. A., Rito, C. J., Singh, U., Stramm, L. E., Melikian-Badalian, A., Baevsky, M., Ballas, L. M., Hall, S. E., Winneroski, L. L. and Faul, M. M. (1996) (S)-13-[(dimethylamino) methyl]-10,11,14,15-tetrahydro- 4,9:16,21-dimetheno-1H,13H-dibenzo [e,k] pyrrol [3,4-h] [1,4,13] oxadiazacyclohexadecene-1,3 (2H)-dione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C beta. J. Med. Chem. 39, 2664-2671. https://doi.org/10.1021/jm950588y
  9. Green, L. J., Marder, P., Ray, C., Cook, C. A., Jaken, S., Musib, L. C., Herbst, R. S., Carducci, M., Britten, C. D., Basche, M., Eckhardt, S. G. and Thornton, D. (2006) Development and validation of a drug activity biomarker that shows target inhibition in cancer patients receiving enzastaurin, a novel protein kinase C-beta inhibitor. Clin. Cancer Res. 12, 3408-3415. https://doi.org/10.1158/1078-0432.CCR-05-2231
  10. Kobayashi, E., Ando, K., Nakano, H., Iida, T., Ohno, H., Morimoto, M. and Tamaoki, T. (1989) Calphostins (UCN- 1028), novel and specific inhibitors of protein kinase C. I. Fermentation, isolation, physic-chemical properties and biological activities. J. Antibiot (Tokyo). 42, 1470-1474. https://doi.org/10.7164/antibiotics.42.1470
  11. Kazanietz, M. G., Lewin, N. E., Bruns, J. D. and Blumberg, P. M. (1995) Characterization of the cysteine-rich region of the Caenorhabditis elegans protein Unc-13 as a high affinity phorbol ester receptor. Analysis of ligandbinding interactions, lipid cofactor requirements, and inhibitor sensitivity. J. Biol. Chem. 270, 10777-10783. https://doi.org/10.1074/jbc.270.18.10777
  12. Bruns, R. F., Miller, F. D., Merriman, R. L., Howbert, J. J., Heath, W. F., Kobayashi, E., Takahashi, I., Tamaoki, T. and Nakano, H. (1991) Inhibition of protein kinase C by calphostin C is light-dependent. Biochem. Biophys. Res. Commun. 176, 288-293. https://doi.org/10.1016/0006-291X(91)90922-T
  13. Churchill, E. N., Qvit, N. and Mochly-Rosen, D. (2009) Rationally designed peptide regulators of protein kinase C. Trends Endocrinol. Metab. 20, 25-33. https://doi.org/10.1016/j.tem.2008.10.002
  14. Herbert, J. M., Augereau, J. M., Gleye, J. and Maffrand, J. P. (1990) chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun. 172, 993-999. https://doi.org/10.1016/0006-291X(90)91544-3
  15. Eckly-Michel, A. E., Le Bec, A. and Lugnier, C. (1997) Chelerythrine, a protein kinase C inhibitor, interacts with cyclic nucleotide phosphodiesterases. Eur. J. Pharmacol. 324, 85-88. https://doi.org/10.1016/S0014-2999(97)00149-0
  16. Zamora, M. A., Dempsey, E. C., Walchak, S. J. and Stelzner, T. J. (1993) BQ123, and ETA receptor antagonist, inhibits endothelin-1-mediated proliferation of human artery smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 9, 429-433. https://doi.org/10.1165/ajrcmb/9.4.429
  17. Newton, A. C. (1997) Regulation of protein kinase C. Curr. Opin. Cell Biol. 9, 161-167. https://doi.org/10.1016/S0955-0674(97)80058-0
  18. Shimoda, L. A., Sylvester, J. T. and Sham, J. S. (1998) Inhibition of voltage-gated $K^+$ current in rat intrapulmonary arterial myocytes by endothelin-1. Am. J. Physiol. 274, 842-853.
  19. Li, P. F., Maasch, C., Haller, H., Dietz, R. and von Harsdorf, R. (1999) Requirement for protein kinase C in reactive oxygen species-induced apoptosis of vascular smooth muscle cells. Circulation 100, 967-973. https://doi.org/10.1161/01.CIR.100.9.967
  20. Inoue, Y., Oike, M., Nakao, K., Kitamura, K. and Kuriyama, H. (1990) Endothelin augments unitary calcium channel currents on the smooth muscle cell membrane of guinea-pig portal vein. J. Physiol. 423, 171-191. https://doi.org/10.1113/jphysiol.1990.sp018017
  21. Van Renterghem, C. and Lazdunski, M. (1993) Endothelin and vasopressin activate low conductance chloride channels in aortic smooth muscle cells. Pflugers. Arch. 425, 156-163. https://doi.org/10.1007/BF00374516
  22. Nakajima, T., Hazama, H., Hamada, E., Wu, S. N., Igarashi, K., Yamashita, T., Seyama, Y., Omata, M. and Kurachi, Y. (1996) Endothelin-1 and vasopressin activate $Ca^{2+}$-permeable non-selective cation channels in aortic smooth muscle cells: mechanism of receptor-mediated $Ca^{2+}$ influx. J. Mol. Cell Cardiol. 28, 707-722. https://doi.org/10.1016/0735-1097(96)00223-9
  23. Park, W. S., Ko, E. A., Han, J., Kim, N. and Earm, Y. E. (2005) Endothelin-1 acts via protein kinase C to block KATP channels in rabbit coronary and pulmonary arterial smooth muscle cells. J. Cardiovasc. Pharmacol. 45, 99-108. https://doi.org/10.1097/01.fjc.0000150442.49051.f7
  24. Park, W. S., Han, J., Kim, N., Youm, J. B., Joo, H., Kim, H. K., Ko, J. H. and Earm, Y. E. (2005) Endothelin-1 inhibits inward rectifier $K^+$ channels in rabbit coronary arterial smooth muscle cells through protein kinase C. J. Cardiovasc. Pharmacol. 46, 681-689. https://doi.org/10.1097/01.fjc.0000182846.08357.ed
  25. Park, W. S., Son, Y. K., Han, J., Kim, N., Ko, J. H., Bae, Y. M. and Earm, Y. E. (2005) Staurosporine inhibits voltage- dependent $K^+$ current through a PKC-independent mechanism in isolated coronary arterial smooth muscle cells. J. Cardiovasc. Pharmacol. 45, 260-269. https://doi.org/10.1097/01.fjc.0000154370.57789.fe
  26. French, R. J. and Shoukimas, J. J. (1981) Blockage of squid axon potassium conductance by internal tetra-N-alkylammonium ions of various sizes. Biophys. J. 34, 271-291. https://doi.org/10.1016/S0006-3495(81)84849-7
  27. Hoshi, T., Zagotta, W. N. and Aldrich, R. W. (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533-538. https://doi.org/10.1126/science.2122519
  28. Heginbotham, L. and MacKinnon, R. (1992) The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8, 483-491. https://doi.org/10.1016/0896-6273(92)90276-J
  29. Snyders, D. J. and Yeola, S. W. (1995) Determinants of antiarrhythmic drug action. Electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circ. Res. 77, 575-583. https://doi.org/10.1161/01.RES.77.3.575
  30. del Camino, D., Holmgren, M., Liu, Y. and Yellen, G. (2000) Blocker protection in the pore of a voltage-gated $K^+$ channel and its structural implications. Nature 403, 321-325. https://doi.org/10.1038/35002099
  31. Kageyama, M., Mori, T., Yanagisawa, T. and Taira, N. (1991) Is staurosporine a specific inhibitor of protein kinase C in intact porcine coronary arteries? J. Pharmacol. Exp. Ther. 259, 1019-1026.
  32. Ko, J. H., Park, W. S. and Earm, Y. E. (2005) The protein kinase inhibitor, staurosporine, inhibits L-type $Ca^{2+}$ current in rabbit atrial myocytes. Biochem. Biophys. Res. Commun. 329, 531-537. https://doi.org/10.1016/j.bbrc.2005.01.156
  33. Ko, J. H., Park, W. S., Kim, S. J. and Earm, Y. E. (2006) Slowing of the inactivation of voltage-dependent sodium channels by staurosporine, the protein kinase C inhibitor, in rabbit atrial myocytes. Eur. J. Pharmacol. 534, 48-54. https://doi.org/10.1016/j.ejphar.2006.01.018
  34. Narahashi, T. (1996) Neuronal ion channels as the target sites of insecticides. Pharmacol. Toxico. 79, 1-14. https://doi.org/10.1111/j.1600-0773.1996.tb00234.x
  35. Catterall, W. A. (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13-25. https://doi.org/10.1016/S0896-6273(00)81133-2
  36. Goldin, A. L. (2001) Resurgence of sodium channel research. Annu. Rev. Physiol. 63, 871-894. https://doi.org/10.1146/annurev.physiol.63.1.871
  37. Lo, C. F. and Breitwieser, G. E. (1994) Protein kinase-independent inhibition of muscarinic $K^+$ channels by staurosporine. Am. J. Physiol. 266, 1128-1132. https://doi.org/10.1152/ajpcell.1994.266.4.C1128
  38. Choi, J. S., Hahn, S. J., Rhie, D. J., Jo, Y. H. and Kim, M. S. (1999) Staurosporine directly blocks Kv1.3 channels expressed in chinese hamster ovary cells. Naunyn Schmiedebergs Arch. Pharmacol. 359, 256-261. https://doi.org/10.1007/PL00005350
  39. Valenzuela, C., Delpon, E., Franqueza, L., Gray, P., Perez, O., Tamargo, J. and Snyders, D. J. (1996) Class III antiarrhythmic effects of zatebradine. Time-, state-, use-, and voltage-dependent block of hKv1.5 channels. Circulation 94, 562-570. https://doi.org/10.1161/01.CIR.94.3.562
  40. Park, W. S., Son, Y. K., Ko, E. A., Ko, J. H., Lee, H. A., Park, K. S. and Earm, Y. E. (2005) The protein kinase C inhibitor, bisindolylmaleimide (I), inhibits voltage-dependent $K^+$ channels in coronary arterial smooth muscle cells. Life Sci. 77, 512-527. https://doi.org/10.1016/j.lfs.2004.10.073
  41. Kim, A., Bae, Y. M., Kim, J., Kim, B., Ho, W. K., Earm, Y. E. and Cho, S. I. (2004) Direct block by bisindolylmaleimide of the voltage-dependent $K^+$ currents of rat mesenteric arterial smooth muscle. Eur. J. Pharmacol. 483, 117-126. https://doi.org/10.1016/j.ejphar.2003.10.028
  42. Voutilainen-Mylylä, S., Tavi, P. and Weckström, M. (2003) Chelerythrine and bisindolylmaleimide I prolong cardiac action potentials by protein kinase C-independent mechanism. Eur. J. Pharmacol. 466, 41-51. https://doi.org/10.1016/S0014-2999(03)01541-3
  43. Cho, H., Youm, J. B., Earm, Y. E. and Ho, W. K. (2001) Inhibition of acetylcholine-activated $K^+$ current by chelerythrine and bisindolylmaleimide I in atrial myocytes from mice. Eur. J. Pharmacol. 424, 173-178. https://doi.org/10.1016/S0014-2999(01)01169-4
  44. Park, W. S., Son, Y. K., Ko, E. A., Choi, S. W., Kim, N. R., Choi, T. H., Youn, H. J., Jo, S. H., Hong, D. H. and Han, J. (2010) A Carbohydrate fraction, AIP1, from Artemisia Iwayomogi reduces the action potential duration by activation of rapidly activating delayed rectifier $K^+$ channels in rabbit ventricular myocytes. Korean J. Physiol. Pharmacol. 14, 119-125. https://doi.org/10.4196/kjpp.2010.14.3.119
  45. Thomas, D., Hammerling, B. C., Wimmer, A. B., Wu, K., Ficker, E., Kuryshev, Y. A., Scherer, D., Kiehn, J., Katus, H. A., Schoels, W. and Karle, C. A. (2004) Direct block of hERG potassium channels by the protein kinase C inhibitor bisindolylmaleimide I (GF109203X). Cardiovasc. Res. 64, 467-476. https://doi.org/10.1016/j.cardiores.2004.07.023
  46. Ficker, E., Kuryshev, Y. A., Dennis, A. T., Obejero-Paz, C., Wang, L., Hawryluk, P., Wible, B. A. and Brown, A. M. (2004) Mechanisms of arsenic-induced prolongation of cardiac repolarization. Mol. Pharmacol. 66, 33-44. https://doi.org/10.1124/mol.66.1.33
  47. Choi, B. H., Choi, J. S., Jeong, S. W., Hahn, S. J., Yoon, S. H., Jo, Y. H. and Kim, M. S. (2000) Direct block by bisindolylmaleimide of rat Kv1.5 expressed in chinese hamster ovary cells. J. Pharmacol. Exp. Ther. 293, 634-640.
  48. Lingameneni, R., Vysotskaya, T. N., Duch, D. S. and Hemmings, H. C. Jr. (2000) Inhibition of voltage-dependent sodium channels by Ro 31-8220, a 'specific' protein kinase C inhibitor. FEBS Lett. 473, 265-268. https://doi.org/10.1016/S0014-5793(00)01532-5
  49. Shi, L. and Wang, C. (1999) Inhibitory effect of the kinase inhibitor chelerythrine on acetylcholine-induced current in PC12 cells. Arch. Biochem. Biophys. 368, 40-44. https://doi.org/10.1006/abbi.1999.1235
  50. Murphy, C. T. and Westwick, J. (1992) Selective inhibition of protein kinase C. Effect on platelet-activating-factor-induced platelet functional responses. Biochem. J. 283, 159-164. https://doi.org/10.1042/bj2830159
  51. Keenan, C., Goode, N. and Pears, C. (1997) Isoform specificity of activators and inhibitors of protein kinase C gamma and delta. FEBS Lett. 415, 101-108. https://doi.org/10.1016/S0014-5793(97)01104-6
  52. Zakharov, S. I., Morrow, J. P., Liu, G., Yang, L. and Marx, S. O. (2005) Activation of the BK (SLO1) potassium channel by mallotoxin. J. Biol. Chem. 280, 30882-30887. https://doi.org/10.1074/jbc.M505302200
  53. Wu, S. N., Wang, Y. J. and Lin, M. W. (2007) Potent stimulation of large-conductance $Ca^{2+}$-activated $K^+$ channels by rottlerin, an inhibitor of protein kinase C-delta, in pituitary tumor (GH3) cells and in cortical neuronal (HCN-1A) cells. J. Cell Physiol. 210, 656-666.
  54. Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. and Salkoff, L. (1993) mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science 261, 221-224. https://doi.org/10.1126/science.7687074
  55. Ghatta, S., Nimmagadda, D., Xu, X. P. and O'Rourke, S. T. (2006) Large-conductance, calcium-activated potassium channels: Structural and functional implications. Pharmacol. Ther. 110, 103-116. https://doi.org/10.1016/j.pharmthera.2005.10.007

Cited by

  1. The inhibitory effect of BIM (I) on L-type Ca2+ channels in rat ventricular cells vol.423, pp.1, 2012, https://doi.org/10.1016/j.bbrc.2012.05.091
  2. Novel AGLP-1 albumin fusion protein as a long-lasting agent for type 2 diabetes vol.46, pp.12, 2013, https://doi.org/10.5483/BMBRep.2013.46.12.106
  3. The inhibitory effect of curcumin on voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells vol.430, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2012.10.132
  4. Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches vol.46, pp.12, 2013, https://doi.org/10.5483/BMBRep.2013.46.12.081
  5. Triglyceride (TG) down-regulates expression of MCP-1 and CCR2 in PMA-derived THP-1 macrophages vol.35, pp.1, 2013, https://doi.org/10.1007/s13258-013-0092-6