DOI QR코드

DOI QR Code

Phosphorylation of SAV1 by mammalian ste20-like kinase promotes cell death

  • Park, Byoung-Hee (Department of Biochemistry, School of Medicine, Chungbuk National University) ;
  • Lee, Yong-Hee (Department of Biochemistry, School of Medicine, Chungbuk National University)
  • Received : 2011.05.30
  • Accepted : 2011.07.08
  • Published : 2011.09.30

Abstract

The mammalian ste20-like kinase (MST) pathway is important in the regulation of apoptosis and cell cycle and emerges as a novel tumor suppressor pathway. MST-induced phosphorylation of Salvador homolog 1 (SAV1), which is a scaffold protein, has not been evaluated in detail. We performed a mass spectrometric analysis of the SAV1 protein that was co-expressed with MST2. Phosphorylation was detected at Thr-26, Ser-27, Ser-36 and Ser-269. Although single or double mutations had little effects, the mutation of all four residues in SAV1 to Ala (SAV1-4A) had inhibitory effects on the MST pathway. MST2-mediated induction of SAV1-4A protein levels, SAV1-4A interaction with MST2 and the self-dimerization of SAV1-4A were weaker compared to those of wild-type SAV1. SAV1-4A inhibited MST2- and K-RasG12V-induced cell death of MCF7 cells. These results suggest that MST-mediated phosphorylation of four residues within SAV1 may be important in the induction of cell death by the MST pathway.

Keywords

References

  1. Zeng, Q. and Hong, W. (2008) The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13, 188-192. https://doi.org/10.1016/j.ccr.2008.02.011
  2. Radu, M. and Chernoff, J. (2009) The DeMSTification of mammalian Ste20 kinases. Curr. Biol. 19, R421-425. https://doi.org/10.1016/j.cub.2009.04.022
  3. Graves, J. D., Gotoh, Y., Draves, K. E., Ambrose, D., Han, D. K., Wright, M., Chernoff, J., Clark, E. A. and Krebs, E. G. (1998) Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J. 17, 2224-2234. https://doi.org/10.1093/emboj/17.8.2224
  4. Ura, S., Masuyama, N., Graves, J. D. and Gotoh, Y. (2001) MST1-JNK promotes apoptosis via caspase-dependent and independent pathways. Genes Cells 6, 519-530. https://doi.org/10.1046/j.1365-2443.2001.00439.x
  5. Choi, J., Oh, S., Lee, D., Oh, H. J., Park, J. Y., Lee, S. B. and Lim, D. S. (2009) Mst1-FoxO signaling protects Naive T lymphocytes from cellular oxidative stress in mice. PLoS One 4, e8011. https://doi.org/10.1371/journal.pone.0008011
  6. Katagiri, K., Katakai, T., Ebisuno, Y., Ueda, Y., Okada, T. and Kinashi, T. (2009) Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes. EMBO J. 28, 1319-1331. https://doi.org/10.1038/emboj.2009.82
  7. Oh, S., Lee, D., Kim, T., Kim, T. S., Oh, H. J., Hwang, C. Y., Kong, Y. Y., Kwon, K. S. and Lim, D. S. (2009) Crucial role for Mst1 and Mst2 kinases in early embryonic development of the mouse. Mol. Cell. Biol. 29, 6309-6320. https://doi.org/10.1128/MCB.00551-09
  8. Hao, Y., Chun, A., Cheung, K., Rashidi, B. and Yang, X. (2008) Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem. 283, 5496-5509. https://doi.org/10.1074/jbc.M709037200
  9. Zhao, B., Wei, X., Li, W., Udan, R. S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., Zheng, P., Ye, K., Chinnaiyan, A., Halder, G., Lai, Z. C. and Guan, K. L. (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747-2761. https://doi.org/10.1101/gad.1602907
  10. Huang, J., Wu, S., Barrera, J., Matthews, K. and Pan, D. (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421-434. https://doi.org/10.1016/j.cell.2005.06.007
  11. Lehtinen, M. K., Yuan, Z., Boag, P. R., Yang, Y., Villen, J., Becker, E. B., DiBacco, S., de la Iglesia, N., Gygi, S., Blackwell, T. K. and Bonni, A. (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125, 987-1001. https://doi.org/10.1016/j.cell.2006.03.046
  12. Yuan, Z., Lehtinen, M. K., Merlo, P., Villen, J., Gygi, S. and Bonni, A. (2009) Regulation of neuronal cell death by MST1-FOXO1 signaling. J. Biol. Chem. 284, 11285-11292. https://doi.org/10.1074/jbc.M900461200
  13. Ahn, S. H., Cheung, W. L., Hsu, J. Y., Diaz, R. L., Smith, M. M. and Allis, C. D. (2005) Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide- induced apoptosis in S. cerevisiae. Cell 120, 25-36. https://doi.org/10.1016/j.cell.2004.11.016
  14. Cheung, W. L., Ajiro, K., Samejima, K., Kloc, M., Cheung, P., Mizzen, C. A., Beeser, A., Etkin, L. D., Chernoff, J., Earnshaw, W. C. and Allis, C. D. (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507-517. https://doi.org/10.1016/S0092-8674(03)00355-6
  15. Chan, E. H., Nousiainen, M., Chalamalasetty, R. B., Schafer, A., Nigg, E. A. and Sillje, H. H. (2005) The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076-2086. https://doi.org/10.1038/sj.onc.1208445
  16. Wu, S., Huang, J., Dong, J. and Pan, D. (2003) hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445-456. https://doi.org/10.1016/S0092-8674(03)00549-X
  17. Lee, J. H., Kim, T. S., Yang, T. H., Koo, B. K., Oh, S. P., Lee, K. P., Oh, H. J., Lee, S. H., Kong, Y. Y., Kim, J. M. and Lim, D. S. (2008) A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J. 27, 1231-1242. https://doi.org/10.1038/emboj.2008.63
  18. Hwang, E., Ryu, K. S., Paakkonen, K., Guntert, P., Cheong, H. K., Lim, D. S., Lee, J. O., Jeon, Y. H. and Cheong, C. (2007) Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway. Proc. Natl. Acad. Sci. U. S. A. 104, 9236-9241. https://doi.org/10.1073/pnas.0610716104
  19. Tapon, N., Harvey, K. F., Bell, D. W., Wahrer, D. C., Schiripo, T. A., Haber, D. A. and Hariharan, I. K. (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-478. https://doi.org/10.1016/S0092-8674(02)00824-3
  20. Callus, B. A., Verhagen, A. M. and Vaux, D. L. (2006) Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J. 273, 4264-4276. https://doi.org/10.1111/j.1742-4658.2006.05427.x
  21. Oppermann, F. S., Gnad, F., Olsen, J. V., Hornberger, R., Greff, Z., Keri, G., Mann, M. and Daub, H. (2009) Largescale proteomics analysis of the human kinome. Mol. Cell. Proteomics 8, 1751-1764. https://doi.org/10.1074/mcp.M800588-MCP200
  22. Gnad, F., Ren, S., Cox, J., Olsen, J. V., Macek, B., Oroshi, M. and Mann, M. (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol. 8, R250. https://doi.org/10.1186/gb-2007-8-11-r250
  23. Burgermeister, E., Chuderland, D., Hanoch, T., Meyer, M., Liscovitch, M. and Seger, R. (2007) Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma. Mol. Cell. Biol. 27, 803-817. https://doi.org/10.1128/MCB.00601-06
  24. Yuan, Z., Kim, D., Shu, S., Wu, J., Guo, J., Xiao, L., Kaneko, S., Coppola, D. and Cheng, J. Q. (2010) Phosphoinositide 3-kinase/Akt inhibits MST1-mediated proapoptotic signaling through phosphorylation of threonine 120. J. Biol. Chem. 285, 3815-3824. https://doi.org/10.1074/jbc.M109.059675
  25. Khokhlatchev, A., Rabizadeh, S., Xavier, R., Nedwidek, M., Chen, T., Zhang, X. F., Seed, B. and Avruch, J. (2002) Identification of a novel Ras-regulated proapoptotic pathway. Curr. Biol. 12, 253-265. https://doi.org/10.1016/S0960-9822(02)00683-8
  26. Rabizadeh, S., Xavier, R. J., Ishiguro, K., Bernabeortiz, J., Lopez-Ilasaca, M., Khokhlatchev, A., Mollahan, P., Pfeifer, G. P., Avruch, J. and Seed, B. (2004) The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J. Biol. Chem. 279, 29247-29254. https://doi.org/10.1074/jbc.M401699200

Cited by

  1. SAV1 represses the development of human colorectal cancer by regulating the Akt-mTOR pathway in a YAP-dependent manner vol.50, pp.4, 2017, https://doi.org/10.1111/cpr.12351
  2. A conserved serine residue regulates the stability of Drosophila Salvador and human WW domain-containing adaptor 45 through proteasomal degradation vol.433, pp.4, 2013, https://doi.org/10.1016/j.bbrc.2013.03.023
  3. Hippo Stabilises Its Adaptor Salvador by Antagonising the HECT Ubiquitin Ligase Herc4 vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0131113
  4. Intersection of Hippo/YAP and Wnt/ -catenin signaling pathways vol.45, pp.2, 2013, https://doi.org/10.1093/abbs/gms084
  5. Protein kinases of the Hippo pathway: Regulation and substrates vol.23, pp.7, 2012, https://doi.org/10.1016/j.semcdb.2012.07.002
  6. The Hippo/MST Pathway Member SAV1 Plays a Suppressive Role in Development of the Prehierarchical Follicles in Hen Ovary vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0160896