DOI QR코드

DOI QR Code

Therapeutic Effect of Total Ginseng Saponin on Skin Wound Healing

  • Kim, Young-Soo (Department of Veterinary Surgery, Chonnam National University College of Veterinary Medicine) ;
  • Cho, Ik-Hyun (Department of Anatomy, College of Oriental Medicine and Institute of Oriental Medicine, Kyung Hee University) ;
  • Jeong, Moon-Jin (Department of Oral Histology and Developmental Biology, Chosun University School of Dentistry) ;
  • Jeong, Soon-Jeong (Department of Oral Histology and Developmental Biology, Chosun University School of Dentistry) ;
  • Nah, Seung-Yeol (Department of Physiology, Konkuk University College of Veterinary Medicine) ;
  • Cho, Young-Sik (Department of Dental Hygiene, Namseoul University) ;
  • Kim, Seung-Hyun (Department of Veterinary Surgery, Chonnam National University College of Veterinary Medicine) ;
  • Go, A-Ra (Department of Veterinary Surgery, Chonnam National University College of Veterinary Medicine) ;
  • Kim, Se-Eun (Department of Veterinary Surgery, Chonnam National University College of Veterinary Medicine) ;
  • Kang, Seong-Soo (Department of Veterinary Surgery, Chonnam National University College of Veterinary Medicine) ;
  • Moon, Chang-Jong (Department of Veterinary Surgery, Chonnam National University College of Veterinary Medicine) ;
  • Kim, Jong-Choon (Department of Veterinary Surgery, Chonnam National University College of Veterinary Medicine) ;
  • Kim, Sung-Ho (Department of Veterinary Surgery, Chonnam National University College of Veterinary Medicine) ;
  • Bae, Chun-Sik (Department of Veterinary Surgery, Chonnam National University College of Veterinary Medicine)
  • Received : 2011.06.05
  • Accepted : 2011.06.21
  • Published : 2011.09.25

Abstract

In this study, we investigated the effects of total ginseng saponin (TGS) on the cutaneous wound healing process using histological analysis. A total of 24 ICR mice, 5-weeks-old, were used for all in vivo experiments. Mice were divided into control and TGS-treated groups and four equidistant 1-cm full-thickness dorsal incisional wounds were created. The wounds were extracted at days 1, 3, 5, and 7 post-injury for histomorphometrical analysis including wound area and contracture measurements, keratinocyte migration rate, and calculation of infiltrating inflammatory cells. The results showed that the wound area was smaller and keratinocyte migration rate was higher in the TGS-treated group than that of the control group from days 3 to 7. Inflammatory cells in the TGS-treated group at days 1 and 3 were reduced compared to the control group. Wound contraction in the TGS-treated group was greater than in the control group on days 3 to 5, and collagen deposition in the TGS-treated group was higher than in the control group during wound healing. The results indicate a beneficial effect of TGS when used to treat skin wounds.

Keywords

References

  1. Stephens P, Thomas DW. The cellular proliferative phase of the wound repair process. J Wound Care 2002;11:253- 261. https://doi.org/10.12968/jowc.2002.11.7.26421
  2. Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 2007; 127:998-1008. https://doi.org/10.1038/sj.jid.5700786
  3. Blazso G, Gabor M, Schonlau F, Rohdewald P. Pycnogenol accelerates wound healing and reduces scar formation. Phytother Res 2004;18:579-581. https://doi.org/10.1002/ptr.1477
  4. Guclu-Ustundag O, Mazza G. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 2007;47:231-258. https://doi.org/10.1080/10408390600698197
  5. Baumann E, Stoya G, Volkner A, Richter W, Lemke C, Linss W. Hemolysis of human erythrocytes with saponin affects the membrane structure. Acta Histochem 2000;102:21-35. https://doi.org/10.1078/0065-1281-00534
  6. Oda K, Matsuda H, Murakami T, Katayama S, Ohgitani T, Yoshikawa M. Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants. Biol Chem 2000;38:67-74.
  7. Killeen GF, Madigan CA, Connolly CR, Walsh GA, Clark C, Hynes MJ, Timmins BF, James P, Headon DR, Power RF. Antimicrobial saponins of Yucca schidigera and the implications of their in vitro properties for their in vivo impact. J Agric Food Chem 1998;46:3178-3186. https://doi.org/10.1021/jf970928j
  8. Konishi M, Hano Y, Takayama M, Nomura T, Hamzah AS, Ahmad RB, Jamani H. Triterpenoid saponins from Hedyotis nudicaulis. Phytochemistry 1998;48:525-528. https://doi.org/10.1016/S0031-9422(98)00038-7
  9. Simoes CM, Amoros M, Girre L. Mechanism of antiviral activity of triterpenoid saponins. Phytother Res 1999; 13:323-328. https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<323::AID-PTR448>3.0.CO;2-C
  10. Apers S, Baronikova S, Sindambiwe JB, Witvrouw M, De Clercq E, Vanden Berghe D, Van Marck E, Vlietinck A, Pieters L. Antiviral, haemolytic and molluscicidal activities of triterpenoid saponins from Maesa lanceolata: establishment of structure-activity relationships. Planta Med 2001;67:528-532. https://doi.org/10.1055/s-2001-16489
  11. Yogeeswari P, Sriram D. Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem 2005;12:657-666. https://doi.org/10.2174/0929867053202214
  12. Just MJ, Recio MC, Giner RM, Cuellar MJ, Máñez S, Bilia AR, Ríos JL. Anti-inflammatory activity of unusual lupane saponins from Bupleurum fruticescens. Planta Med 1998;64:404-407. https://doi.org/10.1055/s-2006-957469
  13. Navarro P, Giner RM, Recio MC, Manez S, Cerda- Nicolas M, Ríos JL. In vivo anti-inflammatory activity of saponins from Bupleurum rotundifolium. Life Sci 2001;68:1199-1206. https://doi.org/10.1016/S0024-3205(00)01019-5
  14. Kimura Y, Sumiyoshi M, Kawahira K, Sakanaka M. Effects of ginseng saponins isolated from red ginseng roots on burn wound healing in mice. Br J Pharmacol 2006;148:860-870.
  15. Wang ZY, Zhang J, Lu SL. Objective evaluation of burn and post-surgical scars and the accuracy of subjective scar type judgment. Chin Med J (Engl) 2008;121:2517-2520.
  16. Guan DW, Ohshima T, Kondo T. Immunohistochemical study on Fas and Fas ligand in skin wound healing. Histochem J 2000;32:85-91. https://doi.org/10.1023/A:1004058010500
  17. Clark RA. Wound repair: overview and general considerations. In: Clark RA, Henson PM. The molecular and cellular biology of wound repair. 2nd ed. New York: Plenum Press, 1996. p.513-560.
  18. Toriseva M, Kahari VM. Proteinases in cutaneous wound healing. Cell Mol Life Sci 2009;66:203-224. https://doi.org/10.1007/s00018-008-8388-4
  19. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999;341:738-746. https://doi.org/10.1056/NEJM199909023411006
  20. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 2007;127:514-525. https://doi.org/10.1038/sj.jid.5700701
  21. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 2001;159:1009-1020. https://doi.org/10.1016/S0002-9440(10)61776-2
  22. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007;127:526-537. https://doi.org/10.1038/sj.jid.5700613
  23. Kang JS. Cosmetic surgery. 3rd ed. Seoul: Kunga Press, 2004.
  24. Hsu S. Green tea and the skin. J Am Acad Dermatol 2005;52:1049-1059. https://doi.org/10.1016/j.jaad.2004.12.044
  25. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 1996;20:933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  26. Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radic Biol Med 1999;27:704-724. https://doi.org/10.1016/S0891-5849(99)00090-8
  27. Babior BM. Phagocytes and oxidative stress. Am J Med 2000;109:33-44. https://doi.org/10.1016/S0002-9343(00)00481-2
  28. Sen CK, Khanna S, Gordillo G, Bagchi D, Bagchi M, Roy S. Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm. Ann N Y Acad Sci 2002;957:239- 249. https://doi.org/10.1111/j.1749-6632.2002.tb02920.x
  29. Sparg SG, Light ME, van Staden J. Biological activities and distribution of plant saponins. J Ethnopharmacol 2004;94:219-243. https://doi.org/10.1016/j.jep.2004.05.016
  30. Ramzy PI, Barret JP, Herndon DN. Thermal injury. Crit Care Clin 1999;15:333-352, ix. https://doi.org/10.1016/S0749-0704(05)70058-0
  31. Choi S. Epidermis proliferative effect of the Panax ginseng ginsenoside $Rb_{2}$. Arch Pharm Res 2002;25:71-76. https://doi.org/10.1007/BF02975265
  32. Kim YG, Sumiyoshi M, Sakanaka M, Kimura Y. Effects of ginseng saponins isolated from red ginseng on ultraviolet B-induced skin aging in hairless mice. Eur J Pharmacol 2009;602:148-156. https://doi.org/10.1016/j.ejphar.2008.11.021
  33. Lee J, Jung E, Lee J, Huh S, Kim J, Park M, So J, Ham Y, Jung K, Hyun CG et al. Panax ginseng induces human type I collagen synthesis through activation of Smad signaling. J Ethnopharmacol 2007;109:29-34. https://doi.org/10.1016/j.jep.2006.06.008

Cited by

  1. 20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol induces apoptosis via induction of endoplasmic reticulum stress in human colon cancer cells vol.29, pp.4, 2013, https://doi.org/10.3892/or.2013.2270
  2. Topical Phytochemicals vol.27, pp.7, 2014, https://doi.org/10.1097/01.ASW.0000450101.97743.0f
  3. extract on human dermal fibroblast proliferation and collagen synthesis vol.13, pp.17424801, 2016, https://doi.org/10.1111/iwj.12530
  4. among Tamoxifen-Treated Female Breast Cancer Survivors in Taiwan: A Population-Based Study vol.2015, pp.1741-4288, 2015, https://doi.org/10.1155/2015/385204
  5. Effect of medicinal plants on wound healing vol.23, pp.2, 2015, https://doi.org/10.1111/wrr.12274
  6. Local injection of granulocyte-colony stimulating factor accelerates wound healing in a rat excisional wound model vol.13, pp.3, 2016, https://doi.org/10.1007/s13770-016-9054-9
  7. Beneficial role and function of fisetin in skin health via regulation of the CCN2/TGF-β signaling pathway vol.25, pp.S1, 2016, https://doi.org/10.1007/s10068-016-0110-y
  8. The Effect of Red Ginseng Extract Intake on Ischemic Flaps vol.30, pp.1, 2017, https://doi.org/10.1080/08941939.2016.1215577
  9. Effects of different cellulose membranes regenerated from Styela clava tunics on wound healing vol.39, pp.5, 2017, https://doi.org/10.3892/ijmm.2017.2923
  10. Asperosaponin VI promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1α/VEGF signaling vol.39, pp.3, 2018, https://doi.org/10.1038/aps.2017.161
  11. Upregulating mTOR/ERK signaling with leonurine for promoting angiogenesis and tissue regeneration in a full-thickness cutaneous wound model vol.9, pp.4, 2018, https://doi.org/10.1039/C7FO01289F
  12. extract on the activity of diabetic fibroblasts in vitro pp.17424801, 2019, https://doi.org/10.1111/iwj.13091
  13. (Pers.) C. D. Adams (Asteraceae) vol.2019, pp.1741-4288, 2019, https://doi.org/10.1155/2019/7957860
  14. Effect of Pycnogenol on Skin Wound Healing vol.43, pp.4, 2011, https://doi.org/10.9729/am.2013.43.4.133
  15. 붉은덕다리버섯 균사체로 발효한 홍삼 배양액의 cell migration 및 항염 효능에 관한 연구 vol.40, pp.3, 2011, https://doi.org/10.15230/scsk.2014.40.3.297
  16. CCD-986sk세포내 시호 추출물의 항주름 활성 검증 vol.58, pp.2, 2011, https://doi.org/10.3839/jabc.2015.029
  17. Wound Healing and the Use of Medicinal Plants vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/2684108
  18. Bioassay-Guided Different Extraction Techniques of Carica papaya (Linn.) Leaves on In Vitro Wound-Healing Activities vol.25, pp.3, 2011, https://doi.org/10.3390/molecules25030517
  19. Phytochemical Analysis and Wound-Healing Activity of Noni (Morinda Citrifolia) Leaf Extract vol.26, pp.4, 2020, https://doi.org/10.1080/10496475.2020.1748159
  20. Paeoniflorin promotes angiogenesis and tissue regeneration in a full‐thickness cutaneous wound model through the PI3K/AKT pathway vol.235, pp.12, 2020, https://doi.org/10.1002/jcp.29808
  21. Wound Healing Activities of Hydromethanolic Crude Extract and Solvent Fractions of Bersama abyssinica Leaves in Mice vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9991146
  22. Pathophysiological Effects of Sulfur Mustard on Skin and its Current Treatments: Possible Application of Phytochemicals vol.24, pp.1, 2011, https://doi.org/10.2174/1386207323666200717150414
  23. Ginseng gintonin, aging societies, and geriatric brain diseases vol.10, pp.1, 2021, https://doi.org/10.1016/j.imr.2020.100450
  24. 미세다륜침을 이용한 인삼추출물의 피부개선 효과연구 vol.36, pp.4, 2011, https://doi.org/10.6116/kjh.2021.36.4.31.
  25. Assessing the mechanisms of action of natural molecules/extracts for phase-directed wound healing in hydrogel scaffolds vol.12, pp.9, 2011, https://doi.org/10.1039/d1md00100k
  26. Assessing the mechanisms of action of natural molecules/extracts for phase-directed wound healing in hydrogel scaffolds vol.12, pp.9, 2011, https://doi.org/10.1039/d1md00100k