Hepatoprotective Effect of Bark of Phellodendron amurense RUPR. on Liver Damage Induced by Carbon Tetrachloride

사염화탄소에 의한 간손상에 대한 황백의 간보호 효과 연구

  • Kwak, Chang-Geun (Department of Pathology, College of Oriental Medicine, Dongguk University) ;
  • Kim, Jae-Eun (Department of Pathology, College of Oriental Medicine, Dongguk University) ;
  • Choi, Dall-Yeong (Department of Pathology, College of Oriental Medicine, Dongguk University) ;
  • Jeong, Han-Sol (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Shin, Sang-Woo (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Joo, Myoung-Su (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Ha, Ki-Tae (Division of Applied Medicine, School of Korean Medicine, Pusan National University)
  • 곽창근 (동국대학교 한의과대학 병리학교실) ;
  • 김재은 (동국대학교 한의과대학 병리학교실) ;
  • 최달영 (동국대학교 한의과대학 병리학교실) ;
  • 정한솔 (부산대학교 한의학전문대학원 응용의학부) ;
  • 신상우 (부산대학교 한의학전문대학원 응용의학부) ;
  • 주명수 (부산대학교 한의학전문대학원 응용의학부) ;
  • 하기태 (부산대학교 한의학전문대학원 응용의학부)
  • Received : 2011.06.15
  • Accepted : 2011.08.11
  • Published : 2011.08.25

Abstract

We evaluated the hepatoprotective activity of crude hot-water extracts of the traditional Korean medicinal herb, Phellodendri Cortex (PC; Bark of Phellodendron amurense RUPR.), in an experimental model of hepatic damage induced by carbon tetrachloride ($CCl_4$). The serum marker of liver damage, sGOT, sGPT and sALP, were significantly decreased in the liver of the PC treated rats, compared with that of $CCl_4$ treated group. The histological observation of liver section of rats, showed the same protective effect of PC treatment. And the protective activity of PC was more significant in the post-treated group than pre-treated group. The significant decrease of malodialdehyde and increase of glutathion, catalase activity were observed in the liver homogenate of PC treated rats. Based on these findings, it is suggested that PC has potent hepatoprotective effects and the mechanism of the protection may be related to antioxidation pathways.

Keywords

References

  1. 章眞如. 肝膽論, 湖北, 湖北科學技術出版社, pp 3-9, 1986.
  2. 전국한의과대학 병리학교실 공저. 한방병리학. 서울, 一中社, pp 266-287, 2002.
  3. 조영주, 김성훈. 지골피 EA분획의 $CCL_{4}$ 손상간에 대한 보호 작용. 대한동의병리학회지 11(2):63-71, 1997.
  4. 匡調元 主編. 中醫實驗病理學. 上海, 上海科學普及出版社, pp 128-135, 1995.
  5. Fernandez, G., Villarruel, M.C., de Toranzo, E.G., Castro, J.A. Covalent binding of carbon tetrachloride metabolites to the heme moiety of cytochrome P-450 and its degradation products. Res. Commun. Chem. Pathol. Pharmacol. 35(2):283-290, 1982.
  6. Tomasi, A., Albano, E., Banni, S., Botti, B., Corongiu, F., Dessi, M.A., Iannone, A., Vannini, V., Dianzani, M.U. Free-radical metabolism of carbon tetrachloride in rat liver mitochondria. A study of the mechanism of activation. Biochem. J. 246(2):313-317, 1987. https://doi.org/10.1042/bj2460313
  7. Le Page, R.N., Cheeseman, K.H., Osman, N., Slater, T.F. Lipid peroxidation in purified plasma membrane fractions of rat liver in relation to the hepatoxicity of carbon tetrachloride. Cell. Biochem. Funct. 6(2):87-99, 1988. https://doi.org/10.1002/cbf.290060203
  8. 서혜진. 사염화탄소의 반복투여가 백서 간장에 미치는 병리 조직학적 연구. 영남대학교 대학원 석사학위논문, 1987.
  9. 전국한의과대학본초학교수 공편. 본초학. 서울, 영림사, pp 182-183, 2000.
  10. 김호철. 한약약리학. 서울, 집문당, pp 138-140, 2001.
  11. Park, J.I., Shim, J.K., Do, J.W., Kim, S.Y., Seo, E.K., Kwon, H.J., Lee, T.K., Kim, J.K., Choi, D.Y., Kim, C.H. Immune-stimulating properties of polysaccharides from Phellodendri cortex (Hwangbek). Glycoconj J. 16(3):247-252, 1999. https://doi.org/10.1023/A:1007084506071
  12. Mori, H., Fuchigami, M., Inoue, N., Nagai, H., Koda, A., Nishioka, I., Meguro, K. Principle of the bark of Phellodendron amurense to suppress the cellular immune response: effect of phellodendrine on cellular and humoral immune responses. Planta Med. 61(1):45-49, 1995. https://doi.org/10.1055/s-2006-957997
  13. Hong, S.J., Fong, J.C., Hwang, J.H. Effects of crude drugs on lipolysis in differentiated 3T3-L1 adipocytes. Kaohsiung J. Med. Sci. 18(4):157-163, 2002.
  14. Hong, S.J., Fong, J.C., Hwang, J.H. Effects of crude drugs on glucose uptake in 3T3-L1 adipocytes. Kaohsiung J. Med. Sci. 16(9):445-451, 2000.
  15. Kong, L.D., Yang, C., QuiXi, Wu, H.P., Ye, D.J. Effects of different processing products of Cortex Phellodendri on scavenging oxygen free radicals and anti-lipid peroxidation. Zhongguo Zhong Yao Za Zhi. 26(4):245-248, 2001.
  16. Reitman, S. and Frankel, S. A colorimetric method for determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases, Am. J. Clin. Pathol. 28: 58-63, 1957.
  17. Petkova, J., Popova, N., Kemileva, Z. Changes of enzyme activity in some organs following thymectomy. Agressologie. 14(5):323-326, 1973.
  18. Ohkawa, H., Ohishi, N., Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2):351-358, 1979. https://doi.org/10.1016/0003-2697(79)90738-3
  19. Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70-77, 1959. https://doi.org/10.1016/0003-9861(59)90090-6
  20. Aebi, H. Catalase in vitro. Methods Enzymol. 105: 121-126, 1984.
  21. Poli, G. Liver damage due to free radicals. Br Med Bull. 49(3):604-620, 1993. https://doi.org/10.1093/oxfordjournals.bmb.a072634
  22. Kamokawa, A., Ohta, S., Tatsugi, A., Kumasaka, M. and Shinoda, M. Experimental Production of Various Types of Cholestasis and the Effects of Cystemine. YAKUGAKU ZASSHI. 106(8):709-714, 1986. https://doi.org/10.1248/yakushi1947.106.8_709
  23. Noguchi, T., Fong, K. L., Lai, E. K., Olson, L. and McCay, P.B. Selective early loss of polypeptides in liver microsomes of $CCL_{4}$-treated rats. Relationship to cytochrome P-450 content. Biochem. Pharmacol. 31(5):609-614, 1982. https://doi.org/10.1016/0006-2952(82)90439-7
  24. Weddle, C.C., Hornbrook, K.R. and McCay, P.B. Lipid peroxidation and alteration of membrane lipids in isolated hepatocytes exposed to carbon tetrachloride. J. Biol. Chem. 251(16):4973-4978, 1976.
  25. Clawson, G.A., Sesno, J., Milam, K., Wang, Y.F., Gabriel, C. The hepatocyte protein synthesis defect induced by galactosamine involves hypomethylation of ribosomal RNA. Hepatology 11(3):428-434, 1990. https://doi.org/10.1002/hep.1840110314
  26. Watanabe, A., Akamatsu, K., Takesue, A., Taketa, K. Dysregulation of protein synthesis in injured liver. A comparative study on microsomal and cytosole enzyme activities, microsomal lipoperoxidation and polysomal pattern in D-galactosamine and carbon tetrachloride-injured livers. Enzyme. 23(5):320-327, 1978. https://doi.org/10.1159/000458596
  27. Poli, G., Chiarpotto, E., Albano, E., Cottalasso, D., Nanni, G., Marinari, U.M., Bassi, A.M., Dianzani, M.U. Carbon tetrachloride-induced inhibition of hepatocyte lipoprotein secretion: functional impairment of Golgi apparatus in the early phases of such injury. Life Sci. 36(6):533-539, 1985. https://doi.org/10.1016/0024-3205(85)90634-4
  28. Biasi, F., Albano, E., Chiarpotto, E., Corongiu, F.P., Pronzato, M.A., Marinari, U.M., Parola, M., Dianzani, M.U., Poli, G. In vivo and in vitro evidence concerning the role of lipid peroxidation in the mechanism of hepatocyte death due to carbon tetrachloride. Cell Biochem Funct. 9(2):111-118, 1991. https://doi.org/10.1002/cbf.290090208
  29. Chenoweth, M.B. and Hake, C.L. The smaller halogenated aliphatic hydrocarbons. Ann. Rev. Pharmac. 2: 363-398, 1962. https://doi.org/10.1146/annurev.pa.02.040162.002051
  30. Melen, K., Hultberg, B., Hagerstrand, I., Isaksson, A., Joelsson, B., Bengmark, S. Lysosomal enzymes in plasma, liver and spleen from rats with carbon tetrachloride-induced liver cirrhosis. Enzyme. 33(2):84-88, 1985. https://doi.org/10.1159/000469411
  31. Esterbauer, H., Schaur. R.J., Zollner. H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology & Medicine. 11: 81-128, 1991. https://doi.org/10.1016/0891-5849(91)90192-6
  32. Anderson, M.E. Enzymatic and chemical methods for the determination of glutathione; In Glutathione: chemical, biochemical and medical aspects, Vol.A, Dolphin D., Poulson R. and Avramovic O. Eds., John WILEY and Sons, pp 339-365, 1989.
  33. Chaudiere, J. and Ferrari-Iliou, R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food. Chem. Toxicol. 37(9-10):949-962, 1999. https://doi.org/10.1016/S0278-6915(99)00090-3
  34. Deisseroth, A. and Dounce, A.L. Catalase: Physicial and Chemical Properties, Mechanism of Catalysis, and Physiological Role, Physiol. Rev. 50: 319-375, 1970. https://doi.org/10.1152/physrev.1970.50.3.319