DOI QR코드

DOI QR Code

Anti-obesity Effects of Black Bean Chungkugjang Extract in 3T3-L1 Adipocytes and Obese Mice Induced by High Fat Diet

검은콩 청국장 추출물이 3T3-L1 지방세포와 고지방식이를 급여한 마우스의 항비만효과에 미치는 영향

  • 장영선 ((주)벤스랩 중앙연구소) ;
  • 정종문 (수원대학교 생명과학과)
  • Received : 2011.08.17
  • Accepted : 2011.09.05
  • Published : 2011.09.30

Abstract

In this study, we investigated the antioxidative activity (scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and superoxide anion radical) and anti-obesity effects of black bean chungkugjang extract (BBCE). DPPH free radical-scavenging activity and superoxide anion radical-scavenging activity ($SC_{50}$ value) of BBCE were $162.7{\pm}2.8$ ppm, and $205.62{\pm}3.6$ ppm, respectively. The anti-obesity effects of BBCE were investigated by measuring Oil Red O staining in 3T3-L1 adipocytes. BBCE reduced the content of Oil Red O dye in 3T3-L1 adipocytes. We also examined the effects of BBCE on adiposity, serum lipid, and leptin levels in obese mice fed a high-fat diet. Mice were fed the BBCE experimental diets for 7 weeks, after which they were sacrificed. ICR male mice were randomly divided into three groups, one normal diet group (ND group) and two high fat diet groups with or without BBCE supplementation (HFD group and HFD-BBCE group). The results showed that weight gain and the food efficiency ratio significantly decreased upon addition of BBCE compared to those of the HFD group. Further, white adipose tissue weights of epididymal, mesenteric, and retroperitoneal areas in the HFD-BBCE group were reduced to 34.8%, 7.1%, and 40.6%, respectively, compared to that of the HFD group. The serum levels of triglycerides, total cholesterol, LDL-cholesterol, and leptin in the HFD-BBCE group were significantly lower than those of the HFD group. Based on these results, it can be concluded that BBCE may have beneficial effects on reducing fat mass and serum lipid content.

본 연구에서는 일반적으로 청국장에 사용하는 대두보다 많은 양의 isoflavone과 같은 생리활성 물질을 함유하고 있는 검은콩을 이용하여 청국장을 제조하였으며, 이를 추출 농축 하여 청국장이 갖는 생리활성 효과를 극대화 하였다. 이렇게 제조한 검은콩 청국장 추출물의 항산화 효과를 측정하여 확인한 결과 DPPH free radical 소거효과와 superoxide radical 소거효과를 $SC_{50}$값으로 나타내었을 때 각각 $162.7{\pm}2.8$ ppm와 $205.62{\pm}3.6$ ppm으로 나타났다. 지방세포 분화 억제 효과를 확인하기 위하여 검은콩 청국장 추출물을 3T3-L1 지방세포에 처리하였다. 검은콩 청국장 추출물 처리에 의하여 세포독성은 나타나지 않았고 Oil Red O 염색을 통해 지방세포 내 중성지방의 양을 측정한 결과 검은콩 청국장 추출물 4,000 ppm 처리 시 최대 17.1%의 지방 감소를 보여 지방세포 분화 억제 효과를 확인하였다. 고지방식이에 의해 유도된 비만 마우스의 몸무게, 지방조직 무게(부고환, 복막 후, 장간막 지방) 및 혈청 지질 농도와 렙틴 농도에 검은콩 청국장 추출물이 어떤 영향을 미치는지 연구하기 위하여 ICR 마우스에 일반식이를 급여한 일반식이군(ND), 고지방 식이를 급여한 고지방식이군(HFD)과 고지방식이에 검은콩 청국장 추출물 분말 5%를 급여한 군(HFC-BBCE군)으로 나누어 7주간 실험하였다. 고지방식이군은 일반식이군과 비교하여 혈청 지질 수준, 몸무게, 지방조직 무게가 현저하게 증가하였다. 반면 검은콩 청국장 추출물을 함유하고 있는 식이에 의해 몸무게, 지방조직 무게 및 혈중 총 콜레스테롤, LDL-콜레스테롤 그리고 중성지방이 고지방 식이와 비교하여 현저하게 감소된 것을 확인하였다. 결론적으로 검은콩 청국장 추출물은 지방세포의 분화를 억제시키며, 고지방식이 급여로 증가된 체중 및 지방조직 무게를 감소시키고, 혈청지질 조성을 개선시키는데 긍정적인 영향을 나타냄을 볼 수 있다. 앞으로 검은콩 청국장 추출물이 항비만 생리활성을 나타내는 새로운 기능성식품 신소재로서 개발 가능성이 있을 것으로 사료된다.

Keywords

References

  1. Choi JW, Lee CK, Lee YC, Moon YI, Park HJ, Han YN. 2002. Biological activities of the extracts from fruit and stem of prickly pear (Opuntia ficus-indica var. saboten)II. Kor J Pharmacogn 33: 230-237.
  2. Kopelman PG. 1994. Causes and consequences of obesity. Med Int 22: 385-388.
  3. Lee JJ, Lee DS, Kim HB. 1999. Fermentation patterns of chungkookjang and kanjang by Bacillus licheniformis B1. Kor J Microbiol 35: 269-301.
  4. Hwang JS, Kim SJ, Kim HB. 2009. Antioxidant and bloodpressure reduction effects of fermented soybean, chungkookjang. Kor J Microbiol 45: 54-57.
  5. Choi UK, Ji WD, Chung YG. 1998. Characteristics of Chunggugjang produced by Bacillus subtilis DC-2. J Korean Soc Food Sci Nutr 27: 846-851.
  6. Sumi H, Hamada H, Nakanishi K, Hiratani H. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol 84: 139-143. https://doi.org/10.1159/000205051
  7. Okamoto A, Hanagata H, Kawamura Y, Yanagida F. 1995. Anti-hypertensive substances in fermented soybean, natto. Plant Foods Hum Nutr 47: 39-47. https://doi.org/10.1007/BF01088165
  8. Kim SH, Yang JL, Song YS. 1999. Physiological functions of Chungkukjang. Food Ind Nutr 4: 40-46.
  9. Lee JO, Ha SD, Kim AJ, Yuh CS, Bang IS, Park SH. 2005. Industrial application and physiological function of Chungkukjang. Food Sci Ind 38: 69-78.
  10. Seo JH, Kim SC, Lee SP. 2008. Physicochemical properties of poly-$\gamma$-glutamic acid produced by a novel Bacillus subtilis HA isolated from Cheonggukjang. J Food Sci Nutr 13: 354-361. https://doi.org/10.3746/jfn.2008.13.4.354
  11. Kim JE, Lee SP. 2010. Evaluation of radical scavenging activity and physical properties of textured vegetable protein fermented by solid culture with Bacillus subtilis HA according to fermentation time. J Korean Soc Food Sci Nutr 39: 872-879. https://doi.org/10.3746/jkfn.2010.39.6.872
  12. Record IR, Dreosit IE, Mclnerney JK. 1995. The antioxidant activity of genistein in vitro. J Nutr Biochem 6: 481-485. https://doi.org/10.1016/0955-2863(95)00076-C
  13. Wei H, Cai Q, Rahn R. 1996. Inhibition of UV light and fenton reaction-induced oxidative DNA damage by the soybean isoflacone genistein. Carcinogenesis 17: 73-78. https://doi.org/10.1093/carcin/17.1.73
  14. Shon MY, Kwon SH, Sung CK, Lee SW, Park SK. 2001. Isolation and microbiological characteristics of Bacillus megaterium SMY-212 for preparation of black bean Chungkugjang. J Life Sci 11: 304-310.
  15. Yasushi S, Tsukase N, Keiko S, Hiroe Y, Hisashi Y. 1999. Stopped-flow and spectrophotometric study on radical scavenging by tea catechins and model compound. Chem Pharm Bull 47: 1369-1374. https://doi.org/10.1248/cpb.47.1369
  16. Okamura H, Mimura A, Yakou Y, Niwano M, Takahara Y. 1993. Antioxidant activity of tannins and flavonoids in Eucalptus rostarata. Phytochemistry 33: 557-561. https://doi.org/10.1016/0031-9422(93)85448-Z
  17. Mac Dougald OA, Hwang CS, Fan H, Lane MD. 1995. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc Natl Acad Sci USA 20: 9034-9037.
  18. Sladowski D, Steer SJ, Clothier RH, Balls M. 1993. An improved MTT assay. J Immunol Methods 157: 203-207. https://doi.org/10.1016/0022-1759(93)90088-O
  19. Green H, Kehinde O. 1975. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5: 19-27. https://doi.org/10.1016/0092-8674(75)90087-2
  20. Friedewald W, Levy R, Fredrickson D. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  21. Ramarathnam N, Osawa T, Ochi H, Kawakishi S. 1995. The contribution of plant food antioxidants to human health trends. Food Sci Technol 6: 75-82. https://doi.org/10.1016/S0924-2244(00)88967-0
  22. Kim JE, Lee SP. 2009. Production of bioactive components and anti-oxidative activity of soybean grit fermented with Bacillus subtilis HA according to fermentation time. Korean J Food Sci Technol 41: 179-185.
  23. Park JW, Lee YJ, Yoon S. 2007. Total flavonoids and phenolics in fermented soy products and their effects on antioxidant activities determined by different assays. Korean J Food Culture 22: 353-358.
  24. Kim KB, Yoo KH, Park HY, Jeong JM. 2006. Anti-oxidative activities of commercial edible plant extracts distributed in Korea. J Korean Soc Appl Biol Chem 49: 328-333.
  25. Lee JJ, Cho CH, Kim JY, Kee DS, Kim HB. 2001. Antioxidant activity of substances extracted by alcohol from chungkukjang powder. Korean J Microbiol 37: 177-181.
  26. Kim DH, An BJ, Kim SG, P TS, Park GH, Son JH. 2011. Anti-inflammatory effect of Ligularia fischeri , Solidago virga-aurea and Aruncus dioicus complex extracts in Raw 264.7 cells. J Life Science 21: 678-683. https://doi.org/10.5352/JLS.2011.21.5.678
  27. Lee SY, Kim HJ, Choi SW. 2011. Study on the antioxidant activity of Geranium nepalense subsp. thunbergii extract. J Soc Cosmet Scientists Korea 37: 61-66.
  28. Chen HC, Farese J. 2000. DGAT and triglyceride synthesis: a new target for obesity treatment? Trends Cardiovasc Med 10: 188-192. https://doi.org/10.1016/S1050-1738(00)00066-9
  29. Duane WC. 1997. Cholesterol metabolism in familial hypertriglyceridemia: effects of obesity versus triglyceride level. J Lab Clin Med 130: 635-642. https://doi.org/10.1016/S0022-2143(97)90113-X
  30. Kim JY, Jeong JE, Moon SH, Park KY. 2010. Antiobesity effect of the Bacillus subtilis KC-3 fermented soymilk in 3T3-L1 adipocytes. J Korean Soc Food Sci Nutr 39: 1126-1131. https://doi.org/10.3746/jkfn.2010.39.8.1126
  31. Park SH, Ko SK, Chung SH. 2005. Euonymus alatus prevents the hyperglycemia and hyperlipidemia induced by high-fat in ICR mice. J Ethnopharmacol 102: 326-335. https://doi.org/10.1016/j.jep.2005.06.041
  32. Wat E, Tandy S, Kapera E, Kamili A, Chung RWS, Brown A, Brown A, Rowney M, Cohn JS. 2009. Dietary phospholipid- rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high fat diet. Atherosclerosis 205: 144-150. https://doi.org/10.1016/j.atherosclerosis.2008.12.004
  33. Gotto AM Jr, Farmer JA. 2006. Drug insight: The role of statins in combination with ezetimibe to lower LDLcholesterol. Nat Clin Pract Cardiovasc Med 3: 664-672. https://doi.org/10.1038/ncpcardio0711
  34. Lee KS, Kim JB. 2009. Effects of the Sarcodon aspralus on the high level of blood lipid and obesity induced by high fat-diet in rat. J Life Science 19: 1265-1270. https://doi.org/10.5352/JLS.2009.19.9.1265
  35. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. 1995. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546-549. https://doi.org/10.1126/science.7624778
  36. Palous A, Serra F, Bonet ML, Pico C. 2000. Obesity: molecular bases of a multifactorial problem. Eur J Nutr 3: 127-144.
  37. Miller WC, Lindeman AK, Wallace J, Niedeerpruem M. 1990. Diet composition, energy intake, and exercise in relation to body fat in men and women. Am J Clin Nutr 52: 426-430. https://doi.org/10.1093/ajcn/52.3.426
  38. Kim JH, Hahm DH, Yang DC, Kim JH, Lee HJ, Shim I. 2005. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. J Pharmacol Sci 97: 124-131. https://doi.org/10.1254/jphs.FP0040184
  39. Bjorntorp P. 1988. The associations between obesity, adipose tissue distribution and disease. Acta Med Scand 723: 121-134.
  40. Bjorntorp P. 1990. "Portal" adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Atherosclerosis 10: 493-496.
  41. Despres JP. 1993. Abdominal obesity as important component of insulin-resistant syndrome. Nurtition 19: 452-469.

Cited by

  1. Effects of Chunggukjang and Greentea-Chunggukjang on Lipid Profile and Antioxidative Enzyme Activity of Liver Tissue in Growing Rats Fed Cholesterol vol.25, pp.2, 2015, https://doi.org/10.17495/easdl.2015.4.25.2.278
  2. 목이버섯의 항비만 효과 vol.16, pp.2, 2018, https://doi.org/10.14480/jm.2018.16.2.103
  3. 빨간배추가 고지방식이를 급여한 렛트의 장기무게 및 혈청지질 수치에 미치는 영향 vol.32, pp.6, 2011, https://doi.org/10.9799/ksfan.2019.32.6.711
  4. 구증구포 처리 대두 추출물의 항산화 활성 및 Angiotensin-I Converting Enzyme 저해 효과 vol.33, pp.2, 2011, https://doi.org/10.9799/ksfan.2020.33.2.167