DOI QR코드

DOI QR Code

Percolation Threshold and Critical Exponent of Dielectric Breakdown Strength of Polyethylene Matrix Composites added Carbon Black

카본블랙 첨가 PMC(Polyethylene Matrix Composites)의 문턱스며들기(Percolation Threshold)와 절연파괴 강도 임계지수

  • Shin, Soon-Gi (Department of Advanced Materials Engineering, College of Samcheok, Kangwon National University)
  • 신순기 (강원대학교 신소재공학과)
  • Received : 2011.04.15
  • Accepted : 2011.08.01
  • Published : 2011.09.27

Abstract

Composites of insulating polyethylene and carbon black are widely used in switching elements, conductive paint, and other applications due to the large gap of resistance value. This research addresses the critical exponent of dielectric breakdown strength of polymer matrix composites (PMC) made with carbon black and polyethylene below the percolation threshold (Pt) for the first time. Here, Pt means the volume fraction of carbon black of which the resistance of the PMC is transferred from its sharp decrease to gradual decrease in accordance with the increase of carbon-black-filled content. First, the Pt is determined based on the critical exponents of resistivity and relative permittivity. Although huge cohesive bodies of carbon black are formed in case of being less than the Pt, a percolation path connecting the conducting phases is not formed. The dielectric breakdown strength (Dbs) of the PMC below Pt is measured by using an impulse voltage in the range from 10 kV to 40 kV to avoid the effect of joule heating. Although the observed Dbs data seems to be well fitted to a straight line with a slope of 0.9 on a double logarithm of (Pt-$V_{CB}$) and Dbs, the least squares method gives a slope of 0.97 for the PMC. It has been found that finite carbon-black clusters play an important role in dielectric breakdown.

Keywords

References

  1. S. Nakamura, J. Inst. Electrostat. Jpn., 25(3), 142 (2001) (in Japanese).
  2. E. K. Sichel, Carbon Black-polymer Composites, p. 253- 280, ed. E. K. Sichel, Mercel Dekker, New York, USA (1982).
  3. N. Probst, Conductivity Imparted by Carbon Black to Composites, p. 273, ed. J. B. Donnet, R. C. Bansel and M. J. Wang, Marcel Dekker, New York, USA (1993).
  4. S. G. Shin, Met. Mater. Int., 7(6), 519 (2001). https://doi.org/10.1007/BF03179249
  5. S. G. Shin, H. J. Lim and J. H. Lee, Kor. J. Mater. Res., 13(11), 732 (2003) (in Korean). https://doi.org/10.3740/MRSK.2003.13.11.732
  6. D. Stauffer and A. Aharony, Introduction to Percolation Theory, p. 123-153, Tayler & Francis, London (1992).
  7. S. G. Shin, Kor. J. Mater. Res., 20(5), 271 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.5.271
  8. S. G. Shin, Electron. Mater. Lett., 6(2), 65 (2010).
  9. S. G. Shin, Kor. J. Met. Mater., 48(9), 867 (2010) (in Korean).
  10. K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita and K. Iishikawa, J. Mater. Sci., 17, 1610 (1982). https://doi.org/10.1007/BF00540785
  11. T. Mizutani, Handbook of Electronic Materials, p. 637- 640, ed. T. Kimura, Asakurasyoten, Tokyo, (2006) (in Japanese).
  12. F. Ehrburger-Dolle, J. Lahaye and S. Misono, Carbon, 32(7), 1363 (1994). https://doi.org/10.1016/0008-6223(94)90123-6
  13. I. Webman, J. Jortner and M. H. Cohen, Phys. Rev. B, 16(6), 2593 (1977). https://doi.org/10.1103/PhysRevB.16.2593
  14. A. L. Efros and B. I. Shklovskii, Phys. Status Solidi B, 76, 475 (1976). https://doi.org/10.1002/pssb.2220760205
  15. T. Ohtsuki and T. Keyes, J. Phys. Math. Gen., 17, L559 (1984). https://doi.org/10.1088/0305-4470/17/11/001
  16. L. Niemeyeer, L. Pietronero and H. J. Wiesman, Phys. Rev. Lett., 52(12), 1033 (1985).
  17. H. Takayasu, Phys. Rev. Lett., 54(11), 1099 (1985). https://doi.org/10.1103/PhysRevLett.54.1099
  18. T. Tanamoto and A. Toriumi, Jpn. J. Appl. Phys., 36(3B), 1439 (1997). https://doi.org/10.1143/JJAP.36.1439
  19. P. D. Beale and P. M. Duxbury, Phys. Rev. B, 37(6), 2785 (1988). https://doi.org/10.1103/PhysRevB.37.2785
  20. S. G. Shin, Kor. J. Mater. Res., 19(12), 644 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.12.644