DOI QR코드

DOI QR Code

Preparation and Characterization of the Mine Residue-based Geopolymeric Ceramics

광미를 이용한 지오폴리머 세라믹제조 및 물성

  • 손세구 (엔아이테크(주) 기술연구소) ;
  • 이우근 (강원대학교 환경공학과) ;
  • 김영도 (엔아이테크(주) 기술연구소) ;
  • 김경남 (강원대학교 신소재공학과)
  • Received : 2011.07.11
  • Accepted : 2011.08.23
  • Published : 2011.09.27

Abstract

The goal of the present work was to investigate the development of a geopolymeric ceramic material from a mixture of mine residue, coal fly ash, blast furnace slag, and alkali activator solution by the geopolymer technique. The results showed that the higher compressive strength of geopolymeric ceramic material increased with an increase in active filler (blast furnace slag + coal fly ash) contents and with a reduction of mine residue contents. The geopolymeric ceramic had very high early age strength. The compressive strength of the geopolymeric ceramic depended on the added active filler content. The maximum compressive strength of the geopolymeric ceramic containing 20 wt.% mine residue was 141.2 MPa. The compressive strength of geopolymeric ceramic manufactured by adding mine residue was higher than that of portland cement mortar, which is 60 MPa, when cured for 28 days. SEM observation showed the possibility of having amorphous aluminosilicate gel within geopolymeric ceramic. XRD patterns indicate that the geopolymeric ceramic was composed of amorphous aluminosilicate, calcite, quartz, and muscovite. The Korea Standard Leaching Test (KSLT) was used to determine the leaching potential of the geopolymeric ceramic. The amounts of heavy metals were noticeably reduced after the solidification of mine residue with active filler.

Keywords

References

  1. H. H. Kwon, Y. S. Sim, J. S. Lee, T. H. Kim, J. A. Kim, S. H. Yoon and K. S. Nam, J. Mine Reclamation Technology, 1(1), 5 (2007) (in Korean).
  2. J. L. Provis, C. Z. Yong, P. Duxson and J. S. J. van Deventer, Colloid. Surface. Physicochem. Eng. Aspect., 336(1-3), 57 (2009). https://doi.org/10.1016/j.colsurfa.2008.11.019
  3. J. L. Bell, P. E. Driemeyer and W. M Kriven, J. Am. Ceram. Soc., 92(1), 1 (2009). https://doi.org/10.1111/j.1551-2916.2008.02790.x
  4. J. Davidovits, J. Therm. Anal., 35, 429 (1989). https://doi.org/10.1007/BF01904446
  5. J. Davidovits, J. Therm. Anal., 37, 1633 (1991). https://doi.org/10.1007/BF01912193
  6. M. Sofi, J. S. J Van Devernter, P. A. Mendis and G. C. Lukey, J. Mater. Sci., 42, 3107 (2007). https://doi.org/10.1007/s10853-006-0534-5
  7. S. G. Son, S. Y. Hong and Y. D. Kim, J. Kor. Ceram. Soc., 45(7), 395 (2008). https://doi.org/10.4191/KCERS.2008.45.7.395
  8. W. K. Lee, S. G. Son, S. Y. Hong, J. H. Lee, E. Z. Park and Y. D. Kim, J. Kor. Soc. Waste Manage., 25, 9 (2008).
  9. A. Palomo, M. W. Grutzeck and M. T. Blanco, Cement Concr. Res., 29, 1323 (1999). https://doi.org/10.1016/S0008-8846(98)00243-9
  10. D. Panias, I. P. Giannopoulou and T. Perraki, Colloid. Surface. Physicochem. Eng. Aspect., 301, 246 (2007). https://doi.org/10.1016/j.colsurfa.2006.12.064
  11. Y. Zhang, W. Sun, Q. Chen and L. Chen, J. Hazard. Mater., 143, 206 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.033
  12. J. Zhang, J. L. Provis, D. Feng and J. S. J. van Deventer, J. Hazard. Mater., 157, 587 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.053
  13. P. Bankowski, L. Zou and R. Hodges, J. Hazard. Mater., 114, 59 (2004). https://doi.org/10.1016/j.jhazmat.2004.06.034
  14. S. G. Son, J. H. Lee, J. M. Lee and Y. D. Kim, J. Kor. Ceram. Soc., 45(5), 303 (2008). https://doi.org/10.4191/KCERS.2008.45.5.303
  15. K. Ikeda, Shigen-to-Sozai, 114, 497 (1998) (in Japanese). https://doi.org/10.2473/shigentosozai.114.497
  16. D. Feng, A. Mikuni, Y. Hirano, R. Komatsu and K. Ikeda, J. Ceram. Soc. Jpn. Int. Ed., 113, 82 (2005). https://doi.org/10.2109/jcersj.113.82
  17. Sindhunata, Ph. D Thesis, p. 83-88, Department of Chemical and Biomolecular Engineering, University of Melbourne, Australia (2006).
  18. W. Z. Choi and E. K. Park, J. Kor. Inst. Resources Recycling, 15(5), 47 (2006).
  19. M. Palacios and F. Puertas, Cement Concr. Res., 37, 691 (2007). https://doi.org/10.1016/j.cemconres.2006.11.021
  20. S. S. Park, H. Y. Kang, S. H. Han and H. B. Kang, J. Kor. Inst. Struct. Maint. Insp., 9(4), 261 (2005).
  21. J. T. Kim, D. S. Seo, G. J. Kim and J. K. Lee, Kor. J. Mater. Res., 20(9), 488 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.9.488

Cited by

  1. Thermal Property of Geopolymer Ceramics Based on Fly Ash-Blast Furnace Slag vol.26, pp.10, 2016, https://doi.org/10.3740/MRSK.2016.26.10.521