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ABSTRACT: The two different numerical approaches for solving the nonlinear ship wave problem are discussed in the present 
paper. One is based on a panel method, which neglects the viscous effects. The other is based on a finite volume method, which 
take into account the viscous effects by solving RANS equations. Focus is laid upon on the advantages and disadvantages of 
two methods. The developed methods are applied to calculating the flow around Series 60 hull to validate the performance of 
the present nonlinear methods. Although the two methods employ quite different numerical approaches, the calculated wave 
patterns from both methods show good agreements with the experiments. However the potential method simu-lates the global 
wave pattern accurately, while the viscous method shows better performance for the local wave prediction near a ship. 
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INTRODUCTION 
 

The steady ship wave problems have significant 
importance in marine hydrodynamics. The wave patterns 
generated by an advancing ship have large influence on the 
total resistance of a ship. In addition the wave patterns are 
very sensitive to the details of hull form design and are easily 
affected by relatively small modifications. Consequently, the 
capability to predict the wave pattern accurately for a given 
hull form is an important asset in the initial stage of hull form 
design. Therefore the effects of a free surface must be taken 
into account in the relevant methods for solving ship wave 
problems. The primary difficulties of ship wave problems 
arise from the nonlinear behavior of the free surface 
condition, i.e. the boundary condition must be applied on the 
wavy free surface, which is not known a priori. 

The standard approach to the nonlinear ship wave 
problem may be divided two distinct methods; either the 
inviscid flow method or viscous flow method. Though the 
inviscid flow methods don’t consider the interaction 
between the viscous and the wavemaking components, 
those methods are widely used in marine hydrodynamics 
because of their robustness and computational efficiency. 
The inviscid flow methods may be categorized in two 
general groups, i.e. the panel/boundary element methods 
(Raven, 1996; Janson, 1997; Kim et al., 1998) and the field 
methods (Farmer et al., 1994) that solve the Euler equation. 

The formers have been proven to be the most effective for 
obtaining fast solutions of nonlinear ship wave problems. At 
present, panel methods already have reached the maturity for 
the design tool. And from the numerical point of view, the 
field methods that solve the discretized Euler equations have 
inherently the same numerical difficulties of the following 
viscous flow methods. As a candidate for the inviscid flow 
calculation the panel/boundary element methods are believed 
to be better than the field methods with regards to the 
applicability and computational efficiency of the solution 
method. Therefore the field methods solving Euler equations 
are not further considered here. 

The viscous flow methods can be divided into two 
categories based upon the coordinate system in which the 
governing equations are solved: interface-capturing methods 
and interface-tracking methods. The interface-capturing methods 
such as the volume of fluid approach (Schumann, 1998) make 
use of an inertial coordinate system. In all these approaches a 
grid fixed in time is used and the free surface is allowed to 
move between grid points. Thus, tracking the free surface and 
imposing the boundary conditions on it are not trivial in these 
approaches. On the other hand, the interface-tracking method, 
which is also called moving grid approach, makes use of a 
non-inertial coordinate system and the free surface coincides 
with a grid surface exactly through the calculations. Thus, 
imposing the boundary conditions on the free surface as well 
as tracking the free surface in time is straightforward. However, 
these approaches involve grid regeneration at every iteration 
step, which may not be possible for all cases. If the breaking 
and overturning waves, which are not modeled in panel 
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methods either, are of no primary interest, the interface-tracking 
methods are more accurate than the interface-capturing 
methods with regards to predicting the ship-generated wave 
patterns. The interface-tracking methods (Muzaferija and 
Peric, 1997) are therefore adopted in the present work. 

Another issue remains for steady nonlinear ship wave 
problem, i.e. whether a steady-iterative or a time-dependent 
solution method is to be adopted in the numerical methods 
for handling the free surface flow. Firstly, the time-dependent 
solution methods have the advantage with regards to 
applicability to truly unsteady free surface problems. But it 
should be pointed out that the steady solution is of primary 
interest for the nonlinear ship wave problem. From this point 
of view the discussion will be given below. 

For the time-dependent approaches, the simple and 
natural formulations of the time-stepping procedure are 
possible. Most time-dependent approaches reach the steady 
state by starting from the rest and accelerating a ship to its 
final speed. If the time-dependent solution methods retain the 
time accuracy in each time steps, much additional flow 
information besides the steady solution can be obtained. 
Another advantage of the time-dependent approach is the fact 
that the initial boundary conditions can be easily given, 
especially for the viscous methods. This is why most viscous 
methods for a nonlinear ship wave problem adopt the time-
dependent approach. 

As opposed to these advantages, the computing demands 
of relevant methods are significantly excessive before a steady 
solution is reached. Another difficulty is present in the time-
dependent approach, i.e. the non-reflective outer boundary 
conditions have to be specified. Otherwise the reflective waves 
will spoil the solution and delay the convergence to a steady 
state. Some damping zone techniques (Hino, 1994; Hinatsu, 
1992), which are adopted in the present viscous method, 
require the more computing demands due to the additional 
computational domain for the damping zone. 

If the steady solution is of primary interest, steady-
iterative solution methods are believed to be more efficient. 
In the steady-iterative solution methods, the steady solution is 
found in an iterative procedure starting from the initial guess 
of the solution. Especially, for the potential methods the good 
initial guess is available in order to start the iterative 
procedure. There have been various linear solutions (Raven, 
1988) approximating the nonlinear ship wave problem. 
Following the discussion of Raven (1996), the steady-
iterative solution method is adopted for the potential method 
in the present study. 

As mentioned previously, the wave pattern generated by 
an advancing ship have a dominant effect on the flow around 
her. In 1994, there has been a workshop (Kodama, 1994) for 
comparison of the numerical methods that can deal with a 
free surface flow. In this workshop, Series 60 hull form was 
used for comparative computations. The numerical results 
with various potential and viscous methods are collected and 
compared with the experiments. Recently a number of 
numerical methods for the nonlinear ship wave problem have 
been developed and updated since the previous workshop. 
The present paper is initiated from the questions that how 
accurately the state-of-the art numerical methods at present 

can predict the wave pattern generated by a ship and how 
much the viscosity of the fluid has influence on the stern 
wave. Therefore the present paper lay a primary emphasis on 
the capability for predicting the wave patterns around a ship 
in the potential and viscous methods. The evaluation and 
validation of both methods will be performed by the detailed 
comparison at the various longitudinal and transverse cuts 
with the extensive experimental data by Toda et al. (1991). 

The rest of the paper is organized as follows: In section 2, 
the potential method is described briefly. In section 3, the 
viscous method with primary emphasis on the numerical 
method is presented. In section 4, results and discussions are 
presented and in section 5, conclusions are drawn. 
 
 
 
POTENTIAL METHOD 
 
Governing equations and boundary conditions 
 

A right-handed Cartesian coordinate system illustrated 
in Fig. 1 is used throughout the analysis. The origin is 
chosen at the intersection of the midship and the still water 
plane. The x-axis is positive in the downstream direction, 
the y-axis is positive to the starboard side of a ship and the 
z-axis is positive up-wards. The incoming free stream is 
parallel to the x-axis and moves to the downstream 
direction. In the following equations, all the quantities are 
nondimensionalized by ship speed U and ship length L and 
the density of a fluid. As mentioned in section 1, the wave 
breaking is not regarded in the present approach. Thus the 
free surface shape will be described as a single-valued 
function of the horizontal coordinates, z = h(x, y). 

In potential flow, it is assumed that the fluid is inviscid 
and incompressible and the motion is irrotational. 
 

 
 
Fig. 1 Coordinate system. 
 

Then the flow can be described by a velocity potential φ, 
which satisfies Laplace equation, 
 

2 0ϕ∇ = .           (1) 
 

In addition we have the Bernoulli equation the constant C 
being equal throughout the domain. 
 

C
Fn

zp =∇⋅∇++ φφ
2
1

2          (2) 
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On the wetted part of the hull a condition of tangential 
flow is to be satisfied. 
 

0=nφ             (3) 
 
where n denotes the outward unit normal vector on the hull 
boundary and the subscript stands for the derivative in that 
direction. 

On the free surface the kinematic condition has the same 
form of the hull boundary condition. 
 

),(at0 yxhzn ==φ                  (4) 
 
or, equivalently 
 

),(at0 yxhzhh zyyxx ==−+ φφφ         (5) 
 

The pressure, expressed in the velocities and wave 
elevation through the Bernoulli equation, must be constant 
(atmospheric) at the free surface. 
 

21 (1 )  at ( , )
2 x y zh Fn z h x yϕ ϕ ϕ= − − − =              (6) 

 
where Fn denotes the Froude number( gLU / ). 
 
Numerical method 
 
Discretization 
 

The raised panel approach is adopted in handling the 
nonlinear free surface condition. On the hull the familiar 
distribution of quadrilateral constant-strength source panels is 
used, with collocation points on the panel centroids. For the 
free surface panels however, quadrilateral constant-strength 
source panels are located at a certain distance above the wave 
surface, while the collocation points are on the wave surface 
itself (see Fig. 2). As mentioned in Raven (1996) and Janson 
(1997), this raised panel approach makes the dis-persion and 
dissipation errors smaller and improves the convergence of 
the nonlinear iterations. 
 

Collocation point of hull panel
Vn=0

Collocation point at a free surface
Vn=0, p=0

Raised source panel

z=0
z=h(x,y)

 
 
Fig. 2 Schematics of raised panel approach. 

The potential φ due to the source panels distributed both 
on the hull surface and on the free surface is 
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+
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)1(),,( σφ          (7) 

 
where NB and NF are the number of panels on the hull and 
the free surface, respectively. σi is the source density and rij is 
the distance from a point on the surface to the field point 
where the potential is computed. The source panels 
automatically satisfy the governing equation (1), so their 
strengths have to be determined from the boundary 
conditions on the hull (3) and on the free surface (5), (6). The 
body boundary condition is implemented simply, but the 
implementation of the free surface conditions deserves some 
discussion, which will be addressed below. 
 
Nonlinear treatment of a free surface 
 

The present free surface problem is nonlinear since the 
free surface conditions (5) and (6) are nonlinear and must 
be satisfied on the initially unknown wave elevation. The 
solution method for the nonlinear problem described here 
is to linearize the free surface condition around known 
base solution Φ and solve the problem in an iterative 
manner. In each iteration the problem is linearized with 
respect to the solution from the previous iteration. The 
first iteration is started from a base flow that may be the 
undisturbed flow or a zero Froude number flow with a 
Neumann condition on the free surface. In the first linear 
solution the linearized free surface conditions are applied 
on the undisturbed free surface and in the following 
iterations they are moved to the wavy free surface 
computed in the previous iteration. 

The free surface condition to be imposed in each iteration 
is derived as follows. The velocity and free surface elevation 
to be calculated are decomposed as: 
 

hHh ′+=′∇+Φ∇=∇ ,φφ          (8) 
 
where H(x, y) is an assumed wave elevation, Φ(x, y, H) is 
a base flow velocity potential on that surface and ∇φ’, h’ 
are perturbations. The kinematic and dynamic boundary 
conditions, linearized in these perturbations, then can be 
written as: 
 

0=−′Φ+′Φ++ zyyxxyyxx hhHH φφφ         (9) 
 

2
2 2 2(1 2

2
                           2 2 )
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ϕ ϕ
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− Φ − Φ −
       (10) 

 
Substituting Equation (10) to Equation (9) results in the 

combined free surface condition. This combined free surface 
condition is to be satisfied on the free surface z = H. 
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As can be noticed from Equation (5) and (6), the 
convergence criteria are the equation residuals in the 
kinematic and dynamic conditions: 
 

2
2 2 2

,

(1 )
2

k z x x y y

d x y z

H H

Fn H

ε

ε

= Φ −Φ −Φ

= −Φ −Φ −Φ −
               (11) 

 
where εk < 0.002 and εk < 0.0025 Fn2 are used in the present 
study. 

Sometimes if the collocation points are too close to or too 
far from the free surface panels during the nonlinear 
iterations, the adaptation of free surface panels according to 
the collocation points (wave elevation) may be required to 
maintain the reasonable distance between the collocation 
points and the wave surface. Particularly, the finer free 
surface panels require these adaptations. These adaptations of 
free surface panels, which are not necessary in every 
iterations, make the dispersion and damping errors to be 
distributed uniformly. 

To enforce the radiation condition, which demands that 
there are no waves ahead a ship, the present method employs 
Dawson’s 4-point upwind-difference operator (Janson, 1997) 
in a longitudinal direction. This 4-point upwind-difference 
operator has less numerical damping than the QUICK scheme 
of the third order, which is usually used in the viscous 
methods. For a transverse direction the standard 3-point 
central-difference operator is employed. Furthermore, 
collocation points are shifted upstream to smooth out the 
source strengths and to prevent upstream waves at high 
speeds. The shifted distance is usually about 25% of the free 
surface panel length. 

The most time-consuming part of solution procedures is 
solving the resultant linear equation obtained by imposing the 
boundary conditions. Thus the present method uses the 
efficient iterative linear equation solver. The adopted 
preconditioned GMRES is usually 5~7 times faster than the 
direct method like Gauss elimination. To achieve the 
convergence of GMRES iterative solver, the linear equation 
is preconditioned by incomplete Gauss elimination (Söding, 
1994). This iterative solver reduces the total calculation time 
of nonlinear solutions substantially. 
 
Overall solution procedure 
 

The solution algorithm of the potential calculation can be 
summarized as follows: 
 
1. Choose an initial approximation of the free surface and an 

initial velocity distribution on that sur-face. 
2. In the free surface collocation points, impose a combined 

free surface condition. Impose the hull boundary condition 
on the hull collocation points. Solve the resulting set of 
linear equations for the source strengths. 

3. Compute the velocity on the free surface. Calculate a new 
estimate of the wave elevation from the dynamic free 
surface condition. 

4. Move the free surface collocation points to the new free 
surface. Adapt the estimated velocity field to the new 
solution. 

5. If necessary, adapt the free surface panels to the new 
estimated wave surface. 

6. Return to step 2 and repeat until the residual errors in 
Equation (11) are smaller than the specified tol-erances. 

 
 
 
VISCOUS METHOD 
 
Governing equations 
 

The governing equations for turbulent flow in the present 
study are Reynolds-averaged Navier-Stokes equations for 
momentum transport and continuity equation for mass 
conservation. 
 

0=
∂
∂

k
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          (12) 
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Where ui=(u, v, w) are the velocity components in xi=(x, 

y, z) directions, ubi is the velocity of the moving grid, p̂ is the 
modified pressure, ijτ is the component of the viscous stress 
tensor, bi is the body force in the direction of the Cartesian 
coordinate xi. 

The present viscous method reaches the steady state by 
starting from the rest and accelerating a ship to its final speed. 
For that purpose the body force in Equation (13) is included, 
which makes the constant acceleration until the inflow 
velocity becomes the prescribed value. The modified pressure 
in Equation (13) is defined as follows: 
 

k
Fn

zpp
3
2ˆ 2 +

−
−=                 (14) 

 
where p is the original pressure, Fn is the Froude number 
( gLU / ) and k is the turbulent kinetic energy. It should be 
noted that the modified pressure includes the hydrostatic 
pressure term (-z/Fn2) for the gravitational force because the 
present viscous method takes into account the effects of the 
free surface. 

In interface-tracking methods similar to the present method, 
the grid is fitted to the free surface and follows its movement, 
which requires the use of a moving grid. As shown in Equation 
(13), the convection term thus includes the velocity of the 
moving grid. Also, the so-called space conservation law has to 
be satisfied for the velocity of a moving grid. This discussion 
will be addressed in the following subsection. The viscous 
stress tensor can be written using Boussinesq's isotropic eddy 
viscosity hypothesis as follows: 
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where Re is the Reynolds number (UL/ν), νt is the turbulent 
eddy viscosity and νe is the effective eddy viscosity. It is 
noted that the term with turbulent kinetic energy is included 
in the pressure term as shown in Equation (14). For 
turbulence closure, the standard k-ε model is utilized. With 
the k-ε two-equation turbulence model, the eddy viscosity 
can be written as 
 

ε
ν μ

2kCt =                  (16) 

 
k and ε are obtained from the solutions of their modeled 
transport equations, which can be written in a general form as: 
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where ϕ = k, ε. For the standard k-ε model, the source terms 
in Equation (17) are: 
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The model constants are given by: 

 
3.1,0.1,92.1,44.1,09.0 21 ===== εεεμ σσ kCCC  (19) 

 
For the economy and robustness of the present viscous 

method, the so-called Launder and Spalding’s wall function 
is utilized to bridge the fully turbulent region and the wall. 
 
Numerical method 
 
Discretization 
 

The cell-centered finite volume method is utilized to 
discretize the governing equations, as discussed in Ferziger 
and Peric (1996), Kim (1999). The governing equations are 
integrated over cell volume Ω with boundary surface S, 
resulting in the following equations. 
 

∫ =⋅
S

dS 0nv           (20) 
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where v is the fluid velocity vector whose Cartesian 
components are ui, vb is the velocity of the surface S, τij is the 
components of the viscous stress tensor, ij is the unit vector in 
xj direction, p̂ is the modified pressure, bi is the body force in 
the direction of the Cartesian coordinate xi, and n is the unit 
normal vector on the surface S pointing outward. 

The unsteady term in the momentum transport equation is 
approximated by implicit Euler scheme, since only the steady 
solution is of the present interest. The convection term in 
Equation (13) is nonlinear and linearization is necessary for 
simplicity. The widely used approach is that the mass flux 
through the cell face is taken from the previous iteration. The 
convective flux of ui through the face of the surface Sc is then 
discretized using QUICK scheme of the third order as 
follows: 
 

QUICK
cicb

Sc
ici umdSuF ,, )( ≈⋅−= ∫ nvv         (22) 

 
where cm is the mass flux through the face of the surface Sc. 
The QUICK scheme requires 13-point stencil, resulting in 
complicated algebraic equations. Thus, the so-called deferred 
correction approach (Khosla and Rubin, 1974) is adopted, 
which a simple upwind difference scheme (UDS) is used 
with lagged higher order terms. The deferred correction 
makes 7-point stencil with simple linear equations. 
 

oldUDS
c

QUICK
c

UDS
cc FFFF )( −+=         (23) 

 
The term in parenthesis (denoted by the superscript 

“old”) is calculated explicitly using the value at the preceding 
outer iteration level and treated as a known value. 

The mass flux in Equation (22) is discretized using the 
midpoint rule as follows: 
 

∫ Ω−⋅≈⋅−=
cS

cccbc SdSm )()( nvnvv        (24) 

 
The volume flux cΩ in Equation (24) is calculated from 

the so-called space conservation law, which is expressed as: 
 

0=⋅−
Ω

∫
S

b dS
dt
d nv          (25) 

 
when the control volume moves, the above relation between 
the rate of change of control volume and its surface velocity 
has to be satisfied. Otherwise, artificial mass sources are 
introduced and accumulated, and they may spoil the solution. 
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The conservation equation for space can be discretized using 
the implicit Euler scheme as follows: 
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nv         (26) 

 
where the superscripts n+1 and n indicate the new and old 
time levels, respectively. The volume change of the left-hand 
term in Equation (26) can be expressed through the sum of 
the volume δΩc swept by the control volume faces during the 
time Δt: 
 

∑ Ω=Ω−Ω +

c
c

nn δ1          (27) 

 
The volume flux caused by the movement of the control 

volume face can therefore be expressed as follows: 
 

t
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Rewriting the viscous stress tensor of Equation (21) gives 
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The central difference scheme (CDS) is utilized for 

diffusion terms, while the terms coming from grid non-
orthogonality is deferred. Finally, the pressure term and the 
body force term in the momentum transport equation are 
discretized by the midpoint rule. 

The resulting algebraic approximations of the governing 
equations are obtained for each control volume in the 
following form: 
 

p
l

llPP QAA =+∑ ϕϕ where BTSNWEl ,,,,,=  (30) 

 
where ϕ stands for a general dependent variables, AP is the 
coefficient of the cell-centered node P, Al are the coefficients 
that multiply the values of ϕ at centers of neighbor cells and 
QP contains source terms and contributions from convective 
and diffusive fluxes. The above linear equations obtained 
from 7-point stencil are solved using strongly implicit 
procedure (Stone, 1968). 

If the pressure field is known a prior, momentum 
equations will give correct velocity field. However, those 
velocity components will not satisfy the continuity equation. 
To ensure divergence-free velocity field, the SIMPLE 
method is employed. Since the collocated grid arrangement 
is chosen, the artificial dissipation term in pressure correction 
equation is added, as discussed in Rhie and Chow (1983). 

As mentioned in the above momentum equation, pressure 
correction equation also have the terms related to grid 
skewness. In the present study, as recommended in Ferziger 
and Peric (1996), the second correction is added to 
compensate for deferred correction terms in pressure 
correction equation. Again, the resulting linear equations are 
solved using strongly implicit procedure until the equation 
residual drops by an order of magnitude each iteration. 
 
Nonlinear treatment of a free surface and other boundary 
conditions 
 

As mentioned previously in the potential method, there 
are two boundary conditions to be satisfied on a free 
surface, i.e., the kinematic and dynamic free surface 
conditions. The kinematic free surface condition in the 
viscous method is also expressed as the same form of the 
potential method, which implies that the normal velocity 
or mass flux on a free surface is zero. On the other hand 
the dynamic free surface condition in the viscous method 
has somewhat different form due to the viscous stresses 
and the surface tension. But we are not willing to resolve 
the thin boundary layer near a free surface, the viscous 
stresses and the surface tension are neglected in this study. 
The dynamic free surface condition then reduces to the 
statement that the pressures is zero on a free surface. 
Consequently, the two free surface conditions have the 
same form in potential and viscous methods. The 
kinematic and dynamic free surface conditions in the 
present viscous method are expressed as follows: 
 
- Kinematic free surface condition 
 
( )[ ] ),(0or0 yxhzatm fsfsb ===⋅− nvv  (31) 

 
- Dynamic free surface condition 
 

),(ˆor0 2 yxhzat
Fn

hpp fsfs ===        (32) 

 
where “fs” denotes a free surface and h is wave elevation. 

The predictor-corrector scheme inherent to all SIMPLE-
type methods is used to force the satisfaction of both the 
kinematic and dynamic conditions at the free surface boundary. 
The implementation of the dynamic free surface condition is 
rather simple when the inviscid form is used in the present 
viscous method. The dynamic condition is included in the 
solution of momentum equations by treating the free surface as 
a boundary with the prescribed pressure. With this approach, at 
the end of a SIMPLE step, the dynamic condition is satisfied, 
but the kinematic one is not satisfied. 

The kinematic condition and the space conservation law 
are used to control the movement of the free surface. The mass 
flux through the free surface in discrete form is given by 
 

∫ Ω−⋅≈⋅−= +

fs
fs

n
fsfsfs SdSm 1)()( nvnvv        (33) 
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where the superscript n+1 denotes the next time level. fsΩ is 
the volume flux swept by the free surface cell face over the 
time step. The expression for the fluid velocity at the free 
surface vfs is obtained using the case of prescribed pressure 
boundaries (Ferziger and Peric, 1996), leading to the 
following expression: 
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where the subscript fs denotes the center of the free-surface 
control volume face, P denotes the cell center, Ωp is the 
volume of the cell, Ap is the central coefficient of the 
momentum equation, dfs is the relative position vector of the 
free-surface cell-face center with respect to the cell center P, 
and the overbar denotes extrapolated value. The simple zero-
gradient extrapolation is used here to calculate fsv , that 

is, Pvv fs = . 
The cell-face velocities obtained from Equation (34) are 

corrected upon solving the pressure-correction equation by 
the amount of: 
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The above cell-face velocities with the correction lead to 

nonzero mass fluxes fsm through the free surface (note 

that 0=′fsp since the pressure is prescribed at the free 
surface). In order to satisfy the kinematic free surface 
condition, the vertices that define the boundary cell face have 
to be moved, such that the correction of the volume swept by 
the free surface fsΩ′ compensates the mass flux obtained in 
the preceding step: 
 

0=Ω′+ fsfsm                  (36) 

 
Implementing Equation (36) for the free surface 

movement is very essential problem for the efficiency and 
stability of the method and there can be many possibilities. 
Here we adopt the method by Muzaferija and Peric (1997), 
which uses the iterative correction approach. Furthermore 
we adopt the so-called background grid in order to reduce 
the efforts for reconstructing the field grid fitted to the 
free surface. The purpose of the background grid is to 
provide predetermined girthwise grid paths along which 
not only the free surface grid points are allowed to move, 
but also the actual computational grid points are generated 
by the interpolation. As shown in Fig. 3, the background 
grid is constructed to cover the domain above the still 
water surface for the allowance of maximum wave 
elevation. 

 
 
Fig. 3 Redistribution of grids using the background grid. 
 

The first estimate of the free surface movement is 
obtained by assuming that the correction of volume 
flux fsΩ′ results from displacing of the boundary cell face Sfs 

by Δh in the direction of a unit vector c
fse . The displacement 

Δh from this approximation is 
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where 0 < αfs ≤ 1 is an under-relaxation factor, the 
vector c

fse is a unit vector at the cell face center taken as the 
direction of the grid line of the background grid and h is the 
wave elevation at the preceding outer iteration. The last term 
of RHS in Equation (37) is the damping term to avoid the 
reflection of waves, which will be discussed below. When the 
outer iterations for one time step converge, the height 
correction Δh will become negligible since fsm goes to zero. 
 

 
 
Fig. 4 Procedure of the free surface movement in the viscous 
method. 
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As mentioned in Muzaferija and Peric (1997), the free 
surface control points are introduced for each boundary cell 
face that coincides with the free surface (see Fig. 4). Their 
position is controlled by the displacements Δh calculated 
from Equation (37), while they control the movement of the 
vertices that define the free surface boundary cell faces. 

The position vectors of the free surface control points rc 
are adjusted according to the expression 
 

c
fs

m
c

m
c h err Δ+=+1          (38) 

 
where m is the counter of the outer iterations within the one 
time step. The next step is to reconstruct the free surface by 
modifying the position vectors of vertices rv that define the 
free surface boundary, according to the expression: 
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where Nc is the number of free surface boundary cell faces 
that share a vertex, ci is a interpolation factor and g

fse is a unit 
vector at a vertex. In this study, the bilinear interpolation is 
used to calculate the increment Δh (the first term in the 
parenthesis) at a vertex. 

Once wave heights at the vertices at the free surface are 
obtained as a solution of Equation (39), the free surface grid 
is moved along g

fse vector to the location of the position vector 
1+m

vr and then projected to the background grid to preserve the 
smoothness. The grid points below the free surface are then 
redistributed by the three-dimensional parametric cubic 
spline using the arc-length distribution of the computational 
grid at the previous outer iteration level. 

Since a cell-centered finite volume approach is used, the 
boundary values of the flow variables at the free surface are 
stored at the centers of the cell faces. However, the motion of 
the free surface is tracked by applying Equation (39) at the 
cell vertices. This calls for interpolation of the wave heights 
and geometry-related variables (e.g. unit vectors along the 
background grid), which introduces noise (short wave 
oscillations) in the computed wave profiles. The numerical 
filter reported by Miyata et al. (1987) and Beddhu et al. 
(1998) is found quite useful to remove these short wave 
oscillations so as to get a smooth wave profile. 
 
Other boundary conditions 
 

The damping function W(x, y) in Equation (37) deserves 
some considerations. At the beginning of stage in the present 
time-dependent approach the waves with all lengths can be 
generated, including those moving faster than the ship itself. 
Such waves must be allowed to leave the computational 
domain through the outer boundaries without too much 
reflection. Otherwise they will spoil the solution and delay 
the convergence to a steady state. But, in particular for three-
dimensional nonlinear wave problems, the satisfactory and 
efficient non-reflective boundary conditions are not yet 

available. As a possible candidate, Hino (1994) showed the 
effective wave damping technique in his simulation of the 
similar nonlinear ship wave problem. Following the Hino’s 
approach, the damping term is added to the kinematic free 
surface condition to reduce the amplitude of waves 
approaching to outer boundaries. The used damping function 
W(x, y) is defined as: 
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where xd, yd is the coordinate from which the damping region 
starts and xo, yo is the location of outflow boundary and outer 
boundary, respectively. A is the parameter that controls the 
amount of damping. 

Besides the above free surface conditions, the 
numerical treatments on other boundary conditions (e.g. 
body surface, inflow plane, outflow plane, outer plane, 
symmetry plane) are described in Ferziger and Peric 
(1996). It should be noted that the outflow and outer 
boundary conditions for wave height is zero because of 
using the damping function. 
 
Overall solution procedure 
 

The solution algorithm of the viscous calculation can be 
summarized as follows: 

The initial condition is the still state, i.e., velocity, 
modified pressure and wave height is zero everywhere. The 
constant acceleration is made in the initial time steps until the 
inflow velocity becomes the prescribed value (u=1). The 
following procedures in each time step are continued until the 
steady state is reached. 

 
1. Solve the momentum equations with the free surface 

defined previously and the prescribed pressure on it. 
2. Enforce local mass conservation in each control volume by 

solving the pressure-correction equation, using the 
prescribed pressure boundary condition on the present free 
surface. 

3. Solve the turbulence equations and update the eddy 
viscosity. 

4. Update the position of the free surface to enforce the 
nonzero mass flux through the free surface based on 
Equation (39) and regenerate the field grid fitted to the 
new free surface. 

5. Return to step 1 and repeat computation until all equations 
and boundary conditions are satisfied. 

6. Advance to the next time step. 
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RESULTS & DISCUSSIONS 
 
Computational conditions 
 

The validation calculations are performed for a Series 60 
(Cb=0.6) hull in fixed condition. For this case a very 
extensive set of measurements is available. Especially, a 
large number of longitudinal and transverse cuts have been 
measured in the experiments. Following the measurement 
conditions by Toda et al. (1991), the Froude number is set to 
0.316 both in potential method and in viscous method. 
Additionally, for the viscous method the Reynolds number is 
set to 4×106. Fig. 5 provides the overall picture of the free 
surface panels for the potential method and the free surface 
grids for the viscous method. It can be noticed clearly that the 
viscous method requires more free surface grids than the 
potential method, which is partly due to the damping zone 
used in the viscous method. 
 

 
 
Fig. 5 Free surface panels of potential method and free 
surface grids of viscous method. 
 
Potential method (panel method) 
 

The hull paneling as shown in Fig. 6 consists of 40×16 in 
the streamwise and the girthwise directions. The free surface 
paneling consists of 210×18 in the longitudinal and the 
transverse directions. The region covered by the free surface 
panels ranges from -1.0 to 1.2 longitudinally and from the 
centerline (y=0) or hull surface to 0.7 transversely. When 
solving a ship wave problem, it should be checked previously 
that the used grid points on the free surface are enough to 
resolve the wave pattern. The relevant parameter is the 
fundamental transverse wavelength (λ0=2πFn2). The usual 
criterion is that at least 30 points per fundamental wavelength 
are required. Since the fundamental wavelength is 0.627 at a 
Froude number of 0.316, the longitudinal grid spacing must 
be less than 2% of the ship length. The present 210 grid 
points in the longitudinal direction correspond to 1% of the 
ship length, which is sufficient for capturing the wave pattern 
at Fn=0.316. 

 
 
Fig. 6 Panel distribution on the hull and the free surface used 
in potential method. 
 
Viscous method (finite volume method) 
 

An H-mesh topology is used on the free surface and an 
O-mesh topology is used in cross sections. The grid consists 
of 133×57×35 grid points in the streamwise, the girth and the 
normal directions. The resolution on the hull surface is 82×35. 
For the viscous method, it is not simple to check the 
aforementioned criterion for the grid points because the grid 
spacing is not uniform in longitudinal direction, as shown in 
Fig. 5. Thus the average grid spacing, when considering the 
grid points in the longitudinal direction on the hull, is about 
1.2% of the ship length. Note that the grid spacing near the 
midship of a hull is larger than 1.2% due to clustering the 
grid points to the bow and the stern. But it is supposed that 
this grid spacing satisfies the criterion. The smaller grid 
spacing is not used in the present study due to the calculation 
time of the present viscous method, which takes about 60 
hours in SGI Onyx2 workstation (R10000 CPU, 344Mflops) 
for the 133×57×35 grid distribution. On the contrary the 
potential method takes about 3 hours on the same 
workstation. Thus distributing more grid points is believed to 
be unpractical as compared with the potential method. The 
magnified views of the grids near the bow and stern are 
shown in Fig. 7. 

 
The solution domain is as follows: 

-1.5 ≤ x ≤ 2.5    0 ≤ y ≤ 2     -2 ≤ z ≤ h(x, y)  
(the wave height) 

The wave damping zone illustrated in Fig. 5 is set as follows: 
1.5 ≤ x ≤ 2.5    1 ≤ y ≤ 2 
 
The minimum spacing in normal direction is taken 

constantly 10-3, which corresponds to 20~100 in y+. By using 
the wall function, the minimum spacing in normal direction 
can be increased and lager than compared to that of near wall 
turbulence models. The nondimensional time step is taken to 
be 0.01 and the calculation is made until T=20. The constant 
acceleration is made in the first 200 steps (T=2). 
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Fig. 7 Grids near a bow and a stern used in viscous method. 
 
Results 
 

The left graph of Fig. 8 shows the wave profile along the 
hull compared with the experimental data for the panel 
method, while the right one is the similar comparison for the 
viscous method. As a whole both calculated results agree 
well with the experimental data. Especially, the wave profile 
calculated from the viscous method shows better agreement 

 

 
Fig. 8 Comparison of wave profiles along the hull. 

with the measurement. The only exception is the fullness of 
the bow wave. This deviation could be due to spray, which is 
not modeled in the present numerical methods. 

On the other hand the wave profile calculated from the 
potential method shows some deviations com-pared with 
the viscous result, i.e. the peak values of troughs around x=-
0.1, 0.3 are underpredicted. The reason is associated with 
the generation of a boundary layer and wake near the hull. 
Another important feature on this underprediction at the 
troughs is related with the numerical treatments in the 
present potential method. The collocation points adjacent to 
the hull are at a rather certain distance from the hull and 
move up and down only during the nonlinear iterations. 
Thus the slope of a section shape is not accurately taken 
into account in the present potential method, with resulting 
somewhat inaccuracy in the wave profile along the hull. But 
fortunately this effect is quite localized and has no effect on 
the general wave pattern. This discussion will be made in 
the following comparisons of the wave profile along the 
longitudinal cuts. 
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Fig. 9 Positions of longitudinal and transverse cuts. 
 

Fig. 9 provides the overall positions of longitudinal and 
transverse cuts to be compared in the following discussion. 
Nine longitudinal cuts for 0.0775 ≤ y ≤ 0.3379 and six 
transverse cuts for –0.5 ≤ x ≤ 0.7 are selected for the detailed 
comparison of the wave patterns by the numerical result and 

 
 
 
the measurement. As illustrated in Fig. 9, it should be pointed 
out that the wave absorber and the tank wall are located at 
y=0.4, 0.5, respectively. Caution is advised in the fact that the 
y=0.3379 cut is somewhat close to the wave absorber of a 
towing tank. This discussion will be addressed later. 
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Potential Method                                       Viscous Method 

 
Fig. 10 Comparison of the wave elevations along longitudinal cuts (solid: experiment, dashed: calculation). 
 

Fig. 10 compares calculated and measured longitudinal 
cuts for the potential method and the viscous method. In 
these figures the solid line features the measurement and the 
dotted line features the calculated result. In the first place the 
overall agreement is excellent in both methods. 

First, note that the potential method gives the good 
agreement with the measurement around x=-0.1 and -0.3 at 
the y=0.0075 cut in Fig. 10. The inaccuracy of the wave 
profile shown in Fig. 8 is almost disappeared at the y=0.0075 
cut, which is the nearest cut to the hull. The same tendency is 
also observed at the y=0.1083 cut. From these comparisons it  

 
can be deduced that the inaccuracy of the wave profile near 
the hull surface in the present potential method has no effect 
on the general wave pattern. 

Second, note that in Fig. 10 a large deviation is observed 
in the amplitude of stern wave system around x=0.9 at the 
y=0.0075 cut of the potential method. The potential method 
overpredicts the amplitude of a stern wave. This is caused by 
viscous effects, which are neglected in the potential method. 
On the contrary the viscous method predicts very accurately 
the amplitude of a stern wave at the same cut, which is 
clearly seen in the viscous result of Fig. 10. 
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Another interesting feature revealed both by experiment 
and by computation is that even many of the short-wave 
features are reproduced by the potential method. Note that in 
the y=0.1739 cut, the measured data shows the irregular wave 
form (small hump) around x=0.25, this is due to the presence  

of a crest of the fore shoulder wave. The potential result in 
Fig. 10 corresponds quite well to this short length wave with 
correct phase and position. In the viscous result, however, 
this wave does not appear because of the numerical 
dissipation of the viscous method. 
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Fig. 11 Comparison of the wave elevations along outer longitudinal cuts (solid: experiment, dashed: calculation). 
 

Fig. 11 shows the similar comparisons of the calculation 
and the experiment for somewhat outer longi-tudinal cuts 
for the potential and viscous methods. It is observed that at 
the outer longitudinal cuts the agreement is not as good as 
the previous inner longitudinal cuts in Fig. 10. The 
numerical damping now actually enters (most clearly at the 
y=0.3379 cut) in the potential method. This numerical 
damping is observed more obviously from the comparison 
between the viscous calculation and the experiment in Fig. 11. 

 
It is particularly interesting to observe that the downstream 
part of the outer cuts contains some phase deviations 
especially at the y=0.3379 cut. But a closer inspection shows 
that these phase deviations in the experiments move forward 
rather than aft when going further away from the hull (see 
y=0.3051,3379 cuts). As previously mentioned, the wave 
measurements at y=0.3051, 3379 cuts may be somewhat 
affected by the partial wave reflections at the wave absorber 
located at y=0.4. 
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Fig. 12 Comparison of the wave elevations along transverse cuts. 
 

Fig. 12 shows the comparisons of the transverse wave 
cuts at the various x-positions. In the x=0.2 sec-tion, the 
viscous method in contrast with the potential method fails to 
predict the small wave hump lo-cated around y=0.2, which 
corresponds to the shoulder wave. The similar tendency can 
be seen in the x=0.5 section. These two comparisons of 
transverse wave cuts clearly indicate that the numerical 
dissipa-tion of the viscous method is excessively higher than 
that of the potential method in the present grid dis-tributions. 
These indications were not clearly visible in the comparisons 
of the longitudinal cuts. 

The comparison of the transverse wave cut at the x=0.7, 
which is located in the wake region of a ship, reveals the 
whole situations of the potential and viscous methods. The 
viscous method gives fairly good agreements with the 
measurement in the highly viscous region such as the region 
up to y=0.1. On the con-trary the potential method simulates 
poorly the stern wave at that region. But in the outer inviscid  

 
region (greater than y=0.1), the potential result is much better 
than the viscous result, i.e., the flat stern wave from y=0.1 to 
y=0.2 is well predicted and the peak of a transverse wave is 
more clearly captured. Fig. 13 and Fig. 14 show the 
comparison of wave contours compared with the 
measurements for the potential and viscous methods, 
respectively. Two computational results simulate the bow 
wave and the first trough fairly well. The differences are 
apparent in the region away from the hull. The diverging 
waves in the viscous method look too smooth compared with 
the experiment and the potential result. 

These results are considered to be due to smaller 
numerical damping in the potential method. Since the present 
potential method is one of boundary element methods, a 
governing equation, i.e. Laplace equation, is already satisfied 
by the distributed source panels. And also the body boundary 
condition, which states that the normal velocity must be zero 
on the hull, does not require any discretization procedures. 
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Thus the main numerical damping enters only when the 
combined free surface condition is discretized in the present 
potential method. But the viscous method requires the 
discretization procedures of both the governing equations in 
the whole computational domain and the boundary conditions 
including the free surface conditions. Accordingly the 
viscous method has inherently more numerical damping than 
the potential method. This result clearly indicates that the 
viscous method needs more grid points on the free surface 
compared with the potential method. 

A closer examination of the wave pattern right behind a 
stern in Fig. 13 and Fig. 14 shows that the viscous method is 
superior to the potential method in the wake region. This 
feature is immediately ob-vious from the Fig. 15, which 
shows the magnified view of the wave pattern and the 
velocity vectors in the wake region of a ship. The velocity 
vectors in the viscous method show clearly the presence of 
the thickened boundary layer near a stern. The large velocity 
vectors from the potential method make the wave pattern 
behind a stern overpredicted compared with the viscous 
method (see Fig. 10). 
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Fig. 13 Wave patterns from the potential method and the 
measurements. 
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Fig. 14 Wave patterns from the viscous method and the 
measurements. 

 
 

 
 
Fig. 15 Close up view of the region near a stern. 
 
 
 
CONCLUSIONS 
 

The recent state-of-the art potential and viscous methods 
are used to solve the nonlinear ship wave problem, based on 
the panel method and the finite volume method, respectively. 
The extensive comparisons with the wave measurements of 
Series 60 hull are performed with the numerical results from 
both methods in order to evaluate the capability of predicting 
the ship wave pattern. Generally, both methods show good 
agreements with the wave measurements. But closer 
inspections reveal the advantages and disadvantages of both 
methods for predicting the ship wave patterns. The potential 
method is sufficiently accurate for the global wave patterns 
(e.g. the diverging waves) except the region near a stern. On 
the contrary the viscous method shows remarkable similarity 
to the wave in local region near the hull, but the global wave 
pattern away from the hull is not captured accurately. 

Up to now the potential method is a very useful tool for 
solving the nonlinear ship wave problem because of its 
numerical robustness and computational efficiency. But the 
ultimate goal is the viscous method taking into account a free 
surface. If further researches are performed on the damping-
free schemes and the algorithm for fast calculation, the 
viscous method can be a useful design tool for ships in the 
near future. 
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