DOI QR코드

DOI QR Code

DETERMINANTS OF THE LAPLACIANS ON THE n-DIMENSIONAL UNIT SPHERE Sn (n = 8, 9)

  • Received : 2011.05.18
  • Accepted : 2011.07.18
  • Published : 2011.09.25

Abstract

During the last three decades, the problem of evaluation of the determinants of the Laplacians on Riemann manifolds has received considerable attention by many authors. The functional determinant for the n-dimensional sphere $S^n$ with the standard metric has been computed in several ways. Here we aim at computing the determinants of the Laplacians on $S^n$ (n = 8, 9) by mainly using ceratin known closed-form evaluations of series involving Zeta function.

Keywords

References

  1. E. W. Barnes, The theory of the G-function, Quart. J. Math. 31 (1899), 264-314.
  2. E. W. Barnes, Genesis of the double Gamma function, Proc. London Math. Soc. (Ser. 1) 31 (1900), 358-381.
  3. E. W. Barnes, The theory of the double Gamma function, Philos. Trans. Roy. Soc. London Ser. A 196 (1901), 265-388. https://doi.org/10.1098/rsta.1901.0006
  4. E. W. Barnes, On the theory of the multiple Gamma functions, Trans. Cambridge Philos. Soc. 19 (1904), 374-439.
  5. J. Choi, Determinant of Laplacian on $S^3$, Math. Japon. 40 (1994), 155-166.
  6. J. Choi, Y. J. Cho and H. M. Srivastava, Series involving the Zeta function and multiple Gamma functions, Appl. Math. Comput. 159 (2004), 509-537. https://doi.org/10.1016/j.amc.2003.08.134
  7. J. Choi and H. M. Srivastava, An application of the theory of the double Gamma function Kyushu J. Math. 53 (1999), 209-222. https://doi.org/10.2206/kyushujm.53.209
  8. J. Choi and H. M. Srivastava, Certain classes of series associated with the Zeta function and multiple Gamma functions J. Comput. Appl. Math. 118 (2000), 87-109. https://doi.org/10.1016/S0377-0427(00)00311-3
  9. E. D'Hoker and D. H. Phong, On determinant of Laplacians on Riemann surface, Comm. Math. Phys. 104 (1986), 537-545. https://doi.org/10.1007/BF01211063
  10. E. D'Hoker and D. H. Phong, Multiloop amplitudes for the bosonic polyakov string, Nucl. Phys. B 269 (1986), 204-234.
  11. H. Kumagai, The determinant of the Laplacian on the n-sphere, Acta Arith. 91 (1999), 199-208. https://doi.org/10.4064/aa-91-3-199-208
  12. B. Osgood, R. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1988), 148-211. https://doi.org/10.1016/0022-1236(88)90070-5
  13. J. R. Quine and J. Choi, Zeta regularized products and functional determinants on spheres, Rocky Mountain J. Math. 26 (1996), 719-729. https://doi.org/10.1216/rmjm/1181072081
  14. P. Sarnak, Determinants of Laplacians, Comm. Math. Phys. 110 (1987), 113-120. https://doi.org/10.1007/BF01209019
  15. J. D. Shallit and K. Zikan, A theorem of Goldbach, Amer. Math. Monthly 93 (1986), 402-403. https://doi.org/10.2307/2323614
  16. H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
  17. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2011, in press.
  18. A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, Vol. I, Springer-Verlag, New York, 1985.
  19. I. Vardi, Determinants of Laplacians and multiple Gamma functions, SIAM J. Math. Anal. 19 (1988), 493-507. https://doi.org/10.1137/0519035
  20. A. Voros, Special functions, spectral functions and the Selberg Zeta function Comm. Math. Phys. 110 (1987), 439-465. https://doi.org/10.1007/BF01212422

Cited by

  1. Determinants of the Laplacians on the n-dimensional unit sphere Sn vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-236