DOI QR코드

DOI QR Code

ON THE STABILITY OF BI-DERIVATIONS IN BANACH ALGEBRAS

  • Received : 2010.02.01
  • Published : 2011.09.30

Abstract

Let A be a Banach algebra and let f : $A{\times}A{\rightarrow}A$ be an approximate bi-derivation in the sense of Hyers-Ulam-Rassias. In this note, we proves the Hyers-Ulam-Rassias stability of bi-derivations on Banach algebras. If, in addition, A is unital, then f : $A{\times}A{\rightarrow}A$ is an exact bi-derivation. Moreover, if A is unital, prime and f is symmetric, then f = 0.

Keywords

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), no. 1, 167-173.
  3. J.-H. Bae and W.-G. Park, Approximate bi-homomorphisms and bi-derivations in $C^{\ast}$- ternary algebras, Bull. Korean Math. Soc. 47 (2010), no. 1, 195-209. https://doi.org/10.4134/BKMS.2010.47.1.195
  4. M. Bresar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), no. 3, 361-397. https://doi.org/10.11650/twjm/1500407660
  5. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
  6. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. https://doi.org/10.1155/S016117129100056X
  7. P. Gavruta, A generalization of the Hyers-Ulam-Rassias Stability of approximately ad- ditive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
  8. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  9. D. H. Hyers, A remark on symmetric bi-additive functions having nonnegative diagonaliza- tion, Glas. Mat. Ser. III 15(35) (1980), 279-282.
  10. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.
  11. Gy. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303-307.
  12. T. Miura, G. Hirasawa, and S.-E. Takahasi, A perturbation of ring derivations on Ba- nach algebras, J. Math. Anal. Appl. 319 (2006), no. 2, 522-530. https://doi.org/10.1016/j.jmaa.2005.06.060
  13. C. Park and J. S. An, Isomorphisms in quasi-Banach algebras, Bull. Korean Math. Soc. 45 (2008), no. 1, 111-118. https://doi.org/10.4134/BKMS.2008.45.1.111
  14. C. Park and J. Hou, Homomorphisms between $C^{\ast}$- algebras associated with the Trif functional equation and linear derivations on $C^{\ast}$- algebras, J. Korean Math. Soc. 41 (2004), no. 3, 461-477. https://doi.org/10.4134/JKMS.2004.41.3.461
  15. J. M. Rassias and H.-M. Kim, Approximate homomorphisms and derivations between $C^{\ast}$-ternary algebras, J. Math. Phys. 49 (2008), no. 6, 10 pp.
  16. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  17. Th. M. Rassias (Ed.), "Functional Equations and Inequalities", Kluwer Academic, Dordrecht, Boston, London, 2000.
  18. P. Semrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory 18 (1994), no. 1, 118-122. https://doi.org/10.1007/BF01225216
  19. S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.