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STRONG CONVERGENCE THEOREMS FOR

ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

AND INVERSE-STRONGLY MONOTONE MAPPINGS

Xin-feng He, Yong-chun Xu, and Zhen He

Abstract. In this paper, we consider an iterative scheme for finding

a common element of the set of fixed points of a asymptotically quasi-
nonexpansive mapping and the set of solutions of the variational inequal-

ity for an inverse strongly monotone mapping in a Hilbert space. Then

we show that the sequence converges strongly to a common element of
two sets. Using this result, we consider the problem of finding a com-

mon fixed point of a asymptotically quasi-nonexpansive mapping and a
strictly pseudocontractive mapping and the problem of finding a common

element of the set of fixed points of a asymptotically quasi-nonexpansive

mapping and the set of zeros of an inverse-strongly monotone mapping.

1. Introduction and preliminaries

Let C be a closed convex subset of a real Hilbert space H and let PC be the
metric projection of H onto C.

A mapping A of C into H is called monotone if for all x, y ∈ C,〈x− y,Ax−
Ay〉 ≥ 0.

The variational inequality problem is to find a u ∈ C such that 〈v−u,Au〉 ≥
0 for all v ∈ C; see [1,2,4,6,11]. The set of solutions of the variational inequality
is denoted by V I(C,A).

A mapping A of C into H is called inverse-strongly monotone if there exists
a positive real number α such that 〈x − y,Ax − Ay〉 ≥ α‖Ax − Ay‖2 for all
x, y ∈ C; see [3,5,7,8]. For such a case, A is called α-inverse-strongly monotone.

A mapping S of C into itself called asymptotically nonexpansive if there
exists a sequence {kn}, kn ≥ 1 of positive real numbers with limn→∞ kn = 1
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and such that

‖Snx− Sny‖ ≤ kn‖x− y‖

for all integers n ≥ 1 and x, y ∈ C. S is called uniformly L-Lipschitzian if there
exists a constant L > 0 such that ∀x, y ∈ C, the following inequality holds:

‖Snx− Sny‖ ≤ L‖x− y‖.

A point x ∈ C is a fixed point of S provided Sx = x. Denote by F (S) the set
of fixed points of S; that is, F (S) = {x ∈ C : Sx = x}.

The map S is called asymptotically quasi-nonexpansive if F (S) 6= Ø and
there exists a sequence {kn}, kn ≥ 1 of positive real numbers with limn→∞ kn =
1 and such that

‖Snx− x∗‖ ≤ kn‖x− x∗‖

for all integers n ≥ 1 and x ∈ C, ∀x∗ ∈ F (S). It is clear from this definition
that every asymptotically nonexpansive mapping with a fixed point is asymp-
totically quasi-nonexpansive(see[16]).

In this paper, we introduce an iterative scheme for finding a common ele-
ment of the set of fixed points of a asymptotically quasi-nonexpansive mapping
and the set of solutions of the variational inequality for an inverse-strongly
monotone mapping in a real Hilbert space. Then we show that the sequence
converges strongly to a common element of two sets. Using this result, we first
obtain a strong convergence theorem for finding a common fixed point of a
asymptotically quasi-nonexpansive mapping and a strictly pseudocontractive
mapping. Further, we consider the problem of finding a common element of
the set of fixed points of a asymptotically quasi-nonexpansive mapping and the
set of zeros of an inverse-strongly monotone mapping.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and
let C be a closed convex subset of H. We write xn ⇀ x to indicate that the
sequence {xn} converges weakly to x. xn → x implies that {xn} converges
strongly to x. For every point x ∈ H, there exists a unique nearest point in C,
denoted by PCx, such that ‖x−PCx‖ ≤ ‖x− y‖ for all y ∈ C. PC is called the
metric projection of H onto C. We know that PC is a nonexpansive mapping
of H onto C. It is also known that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (1.1)

for every x, y ∈ H. Moreover, PCx is characterized by the properties: PCx ∈ C
and 〈x − PCx, PCx − y〉 ≥ 0 for all y ∈ C. In the context of the variational
inequality problem, this implies that

u ∈ V I(C,A)⇐⇒ u = PC(u− λAu), ∀λ > 0. (1.2)

A mapping T : C → C is said to be semi-compact if, for any sequence {xn} in
C such that ‖xn − Txn‖ → 0 as n → ∞, there exists a subsequence {xnj

} of
{xn} such that {xnj} converges strongly to some x∗ in C .
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If A is an α-inverse-strongly monotone mapping of C into H, then it is
obvious that A is 1/α-Lipschitz continuous.We also have that for all x, y ∈ C
and λ > 0,

‖(I − λA)x− (I − λA)y‖2 = ‖(x− y)− λ(Ax−Ay)‖2

= ‖x− y‖2 − 2λ〈x− y,Ax−Ay〉+ λ2‖Ax−Ay‖2

≤ ‖x− y‖2 + λ(λ− 2α)‖Ax−Ay‖2.
(1.3)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping of C into H.

Lemma 1.1. (K. Goebel and W. A. Kirk [15]) Let K be a nonempty, closed,
convex and bounded subset of a uniformly convex Banach space X, and let
F : K → K be asymptotically nonexpansitve. Then F has a fixed point.

2. The convergence theorem

In this section, we prove a strong convergence theorem for asymptotically
quasi-nonexpansive mappings and inverse-strongly monotone mappings using
the idea of [13] and [14].

Theorem 2.1. Let C be a bounded closed convex subset of a real Hilbert space
H. Let A be an α-inverse-strongly monotone mapping of C into H and let S
be a uniformly L-Lipschitzian, asymptotically quasi-nonexpansive mapping of
C into itself with sequence {kn} ⊂ [1,∞) such that F (S) ∩ V I(C,A) 6= ∅ .
Suppose x0 ∈ C and {xn} is given by

x0 ∈ C, λ > 0,
yn = PC(xn − λnAxn),
zn = αnxn + (1− αn)Snyn,
Hn = {v ∈ C : ‖zn − v‖2 ≤ ‖xn − v‖2 + θn},
Wn = {z ∈ C : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

(2.1)

where

θn = (1− αn)(k2n − 1)(diamC)2 → 0, as n→∞,
{αn} is a sequence in [0, 1) and {λn} is a sequence in [0, 2α]. If {αn} and
{λn} are chosen so that {λn} ∈ [a, b] for some a, b with 0 < a < b < 2α,
and λn → λ0, limn→∞ αn = 0. Assume that S is semi-compact. Then {xn}
converges strongly to PF (S)∩V I(C,A)(x0).

Proof. First note that S has a fixed point in C by Lemma 1.1; that is, F (S)
is nonempty. Since C is a bounded set, therefore {xn},{Axn} and {Snxn} are
also bounded.

Next observe that Hn is convex. Indeed, the defining inequality in Hn is
equivalent to the inequality

2〈(xn − zn), v〉 ≤ ‖xn‖2 − ‖zn‖2 + θn,
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which is affine (and hence convex) in v. Next observe that F (S)∩ V I(C,A) ⊂
Hn for all n. Indeed, we have, for all p ∈ F (S) ∩ V I(C,A),

‖zn − p‖2 = ‖αn(xn − p) + (1− αn)(Snyn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)‖Snyn − p‖2

≤ αn‖xn − p‖2 + (1− αn)k2n‖xn − p‖2

= ‖xn − p‖2 + [αn + (1− αn)k2n − 1]‖xn − p‖2

≤ ‖xn − p‖2 + θn.

(2.2)

So p ∈ Hn for all n. Next we show that

F (S) ∩ V I(C,A) ⊂ Hn ∩Wn, for all n ≥ 0. (2.3)

It suffices to show that F (S) ∩ V I(C,A) ⊂ Wn for all n ≥ 0. We prove this
by induction. For n = 0, we have F (S) ∩ V I(C,A) ⊂ C = W0. Assume that
F (S) ∩ V I(C,A) ⊂ Wn. Since xn+1 is the projection of x0 onto Hn ∩Wn, we
have

〈xn+1 − z, x0 − xn+1〉 ≥ 0, ∀ z ∈ Hn ∩Wn. (2.4)

As F (S)∩V I(C,A) ⊂ Hn ∩Wn, the last inequality holds, in particular, for all
z ∈ F (S) ∩ V I(C,A). This together with the definition of Wn+1 implies that
F (S) ∩ V I(C,A) ⊂Wn+1. Hence (2.4) holds for all n ≥ 0.

Next we show that

‖xn+1 − xn‖ → 0. (2.5)

Indeed, by the definition of Wn, we have xn = PWn
(x0) which together with

the fact that xn+1 ∈ Hn ∩Wn ⊂Wn implies that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.

This shows that the sequence {‖xn−x0‖} is increasing. Since C is bounded, we
obtain that the limn→∞ ‖xn − x0‖ exists. Noticing again that xn = PWn

(x0)
and xn+1 ∈ Wn which imply that 〈xn+1 − xn, xn − x0〉 ≥ 0, and also noticing
the identity

‖u− v‖2 = ‖u‖2 − ‖v‖2 − 2〈u− v, v〉, ∀u, v ∈ H,

we obtain

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 → 0, as n→∞.

(2.6)
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By the definition of yn, we have

‖yn+1 − yn‖ = ‖PC(xn+1 − λn+1Axn+1)− PC(xn − λnAxn)‖
≤ ‖xn+1 − λn+1Axn+1 − xn + λnAxn‖
≤ ‖(xn+1 − λn+1Axn+1)− (xn − λn+1Axn)‖

+ |λn − λn+1|‖Axn‖
≤ ‖xn+1 − xn‖+ |λn − λn+1|‖Axn‖.

(2.7)

Since {Axn} is bounded and ‖xn+1 − xn‖ → 0, we obtain ‖yn+1 − yn‖ → 0.
From xn+1 ∈ Hn, we have

‖zn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θn → 0, as n→∞,
‖zn − xn‖ ≤ ‖zn − xn+1‖+ ‖xn+1 − xn‖ → 0.

For u ∈ F (S) ∩ V I(C,A), from (1.3), we obtain

‖zn − u‖2 = ‖αnxn + (1− αn)Snyn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖Snyn − u‖2

≤ αn‖xn − u‖2 + (1− αn)k2n‖yn − u‖2

≤ αn‖xn − u‖2 + (1− αn)k2n‖xn − u‖2

+ (1− αn)k2na(b− 2α)‖Axn −Au‖2

≤ ‖xn − u‖2 + (1− αn)(k2n − 1)‖xn − u‖2

+ (1− αn)k2na(b− 2α)‖Axn −Au‖2.

.

Therefore, we have

− (1− αn)k2na(b− 2α)‖Axn −Au‖2

≤ ‖xn − u‖2 − ‖zn − u‖2 + (1− αn)(k2n − 1)‖xn − u‖2

= (1− αn)(k2n − 1)‖xn − u‖2 + (‖xn − u‖+ ‖zn − u‖)
× (‖xn − u‖ − ‖zn − u‖)
≤ (1− αn)(k2n − 1)‖xn − u‖2 + (‖xn − u‖+ ‖zn − u‖)
× ‖xn − zn‖.

Since kn → 1 and ‖zn − xn‖ → 0, we obtain ‖Axn −Au‖ → 0. From (1.1), we
have

‖yn − u‖2 = ‖PC(xn − λnAxn)− PC(u− λnAu)‖2

≤ 〈(xn − λnAxn)− (u− λnAu), yn − u〉

=
1

2
{‖(xn − λnAxn)− (u− λnAu)‖2 + ‖yn − u‖2

− ‖(xn − λnAxn)− (u− λnAu)− (yn − u)‖2}
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≤ 1

2
{‖xn − u‖2 + ‖yn − u‖2 − ‖(xn − yn)− λn(Axn −Au)‖2}

=
1

2
{‖xn − u‖2 + ‖yn − u‖2 − ‖xn − yn‖2

+ 2λn〈xn − yn, Axn −Au〉 − λ2n‖Axn −Au‖2}.
So, we obtain

‖yn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 + 2λn〈xn − yn, Axn −Au〉
− λ2n‖Axn −Au‖2

and hence

‖zn − u‖2 = ‖αnxn + (1− αn)Snyn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖Snyn − u‖2

≤ αn‖xn − u‖2 + (1− αn)k2n‖yn − u‖2

≤ (1− αn)(k2n − 1)‖xn − u‖2 + ‖xn − u‖2 − (1− αn)k2n‖xn − yn‖2

+ 2λn(1− αn)k2n〈xn − yn, Axn −Au〉 − λ2n(1− αn)k2n‖Axn −Au‖2.

Since kn → 1, ‖zn − xn‖ → 0 and ‖Axn −Au‖ → 0, we obtain ‖xn − yn‖ → 0.
In virtue of

‖zn − Snyn‖ = αn‖xn − Snyn‖ → 0,

‖zn − yn‖ ≤ ‖zn − xn‖+ ‖xn − yn‖ → 0,

we have

‖Snyn − yn‖ ≤ ‖Snyn − zn‖+ ‖zn − yn‖ → 0.

We deduce that

‖Syn − yn‖ ≤ ‖Syn − Sn+1yn‖+ ‖Sn+1yn − Sn+1yn+1‖
+ ‖Sn+1yn+1 − yn+1‖+ ‖yn+1 − yn‖
≤ L‖yn − Snyn‖+ ‖Sn+1yn+1 − yn+1‖+ (1 + L)‖yn − yn+1‖ → 0

and
‖Snxn − xn‖ ≤ ‖Snxn − Snyn‖+ ‖Snyn − yn‖+ ‖yn − xn‖

≤ (L+ 1)‖yn − xn‖+ ‖Snyn − yn‖ → 0.

Similarity, we have ‖Sxn − xn‖ → 0.
By the assumption of Theorem 2.1, S is semi-compact, therefore it follows

that there exists a subsequence {xni
} ⊂ {xn} such that xni

→ w. Hence we
have that

‖Sw − w‖ = lim ‖Sxni
− xni

‖ = 0,

i.e.,w ∈ F (S).
We now prove that w = PF (S)(x0) and xn → w. Put w′ = PF (S)(x0) and

consider the sequence {x0−xni}. Then we have x0−xni → x0−w and by the
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fact that ‖x0 − xn+1‖ ≤ ‖x0 − w′‖ for all n ≥ 0 which is implied by the fact
that xn+1 = PHn∩Wn

(x0), we obtain

‖x0 − w′‖ ≤ ‖x0 − w‖ = lim
i→∞

‖x0 − xni
‖ = lim

i→∞
‖x0 − xni+1‖ ≤ ‖x0 − w′‖.

This implies that ‖x0−w′‖ = ‖x0−w‖. (hence w′ = w by the uniqueness of the
nearest point projection of x0 onto F (S).) It follows that xni → w′. Replacing
{xn} with {xni}, also there exists a convergence subsequence of {xni}. Hence,
we conclude that xn → w′ = w.

Thus, yn → w. Next we show that w ∈ V I(C,A).
Since {λn} ⊂ [0, 2α], λn → λ0, thus yn → PC(I − λ0A)w. Indeed,

‖yn − PC(I − λ0A)w)‖ = ‖PC(I − λnA)xn − PC(I − λ0A)w‖
≤ ‖(I − λnA)xn − (I − λ0A)w‖
≤ ‖xn − w‖+ λn‖Axn −Aw‖+ |λn − λ0|‖Aw‖.

Since A is 1/α-Lipschitz continuous, hence,‖Axn − Aw‖ → 0. We have yn →
PC(I − λ0A)w. On the other hand, from yn → w and the uniqueness of the
limit, we have w = PC(I − λ0A)w, i.e. w ∈ V I(C,A). At the same time we
also show that {xn} converges strongly to w = PF (S)∩V I(C,A)(x0). �

Remark 2.2. Theorem 2.1 is generalized Theorem 2.2 in [14]. The operator
S extend from asymptotically nonexpansive mapping to asymptotically quasi-
nonexpansive mapping. If S = I is identical operator, then {xn} converges
strongly to PV I(C,A)(x0).

3. Applications

In this section, we prove two theorems in a real Hilbert space by using
Theorem 2.1. A mapping T : C → C is called strictly pseudocontractive if
there exists k with 0 ≤ k < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2

for all x, y ∈ C. If k = 0, then T is nonexpansive.
Put A = I − T , where T : C → C is a strictly pseudocontractive mapping

with k. Then A is (1 − k)/2-inverse-strongly monotone (see [3]). Actually, we
have, for all x, y ∈ C,

‖(I −A)x− (I −A)y‖2 ≤ ‖x− y‖2 + k‖Ax−Ay‖2.
On the other hand, since H is a real Hilbert space, we have

‖(I −A)x− (I −A)y‖2 = ‖x− y‖2 + ‖Ax−Ay‖2 − 2〈x− y,Ax−Ay〉.
Hence we have

〈x− y,Ax−Ay〉 ≥ 1− k
2
‖Ax−Ay‖2.

Using Theorem 2.1, we first prove a strong convergence theorem for finding
a common fixed point of a asymptotically quasi-nonexpansive mapping and a
strictly pseudocontractive mapping.
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Theorem 3.1. Let C be a bounded closed convex subset of a real Hilbert space
H. let T be a k-strictly pseudocontractive mapping of C into itself such that
F (S)∩F (T ) 6= ∅ and let S be a uniformly L-Lipschitzian, asymptotically quasi-
nonexpansive mapping of C into itself with sequence {kn} ⊂ [1,∞). Suppose
x0 ∈ C and {xn} is given by

x0 ∈ C, λ > 0,
yn = (1− λn)xn + λnTxn,
zn = αnxn + (1− αn)Snyn,
Hn = {v ∈ C : ‖zn − v‖2 ≤ ‖xn − v‖2 + θn},
Wn = {z ∈ C : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PHn∩Wn(x0), n ≥ 0,

where
θn = (1− αn)(k2n − 1)(diamC)2 → 0, as n→∞,

{αn} is a sequence in [0, 1) and {λn} is a sequence in [0, 1 − k]. If {αn} and
{λn} are chosen so that {λn} ∈ [a, b] for some a, b with 0 < a < b < 1 − k,
and λn → λ0, limn→∞ αn = 0. Assume that S is semi-compact.Then {xn}
converges strongly to PF (S)∩F (T )(x0).

Proof. Put A = I − T . Then A is (1 − k)/2-inverse-strongly monotone. We
have F (T ) = V I(C,A) and PC(xn − λnAxn) = (1 − λn)xn + λnTxn(see[14]).
So, by Theorem 2.1, we obtain the desired result. �

Using Theorem 2.1, we also have the following:

Theorem 3.2. Let H be a real Hilbert space. Let A be an α-inverse-strongly
monotone mapping of H into itself and let S be a uniformly L-Lipschitzian,
asymptotically quasi-nonexpansive mapping of H into itself such that F (S) ∩
A−10 6= ∅. Suppose

x0 ∈ C, λ > 0,
yn = xn − λnAxn,
zn = αnxn + (1− αn)Snyn,
Hn = {v ∈ C : ‖zn − v‖2 ≤ ‖xn − v‖2 + θn},
Wn = {z ∈ C : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

where
θn = (1− αn)(k2n − 1)M → 0, as n→∞.

If we assume that {xn} is bounded sequence with bounds M ,{αn} is a sequence
in [0, 1) and {λn} is a sequence in [0, 2α]. If {αn} and {λn} are chosen
so that {λn} ∈ [a, b] for some a, b with 0 < a < b < 2α, and λn → λ0,
limn→∞ αn = 0. Assume that S is semi-compact. Then {xn} converges strongly
to PF (S)∩A−10(x0).

Proof. We have A−10 = V I(H,A). So, putting PH = I, by Theorem 2.1, we
obtain the desired result. �



STRONG CONVERGENCE THEOREMS 9

References

[1] F. E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull.

Amer. Math. Soc. 71 (1965), 780–785.
[2] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector

spaces, Math. Ann. 177 (1968), 283–301.
[3] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings

in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197–228.

[4] R. E. Bruck, On the weak convergence of an ergodic iteration for the solution of vari-
ational inequalities for monotone operators in Hilbert space, J. Math. Anal. Appl. 61

(1977), 159–164.

[5] H. Iiduka, W. Takahashi and M. Toyoda, Approximation of solutions of variational
inequalities for monotone mappings, Pan Amer. Math. J. 14 (2004), 49–61.

[6] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20

(1967), 493–517.
[7] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities

and convergence rates, Set-Valued Anal. 6 (1998), 313–344.

[8] K. Nakajo and W. Takahashi, Strong and weak convergence theorems by an improved
splitting method, Comm. Appl. Nonlinear Anal. 9 (2002), 99–107.

[9] Z. Opial, Weak convergence ofthe sequence of successive approximation for nonexpansive

mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
[10] W. Takahashi, Nonlinear complementarity problem and systems of convex inequalities,

J. Optim. Theory Appl. 24 (1978), 493–508.
[11] T. H. Kim and H. K. Xu, Remarks on asymptotically nonexpansive mappings, Nonlinear

Anal. 41 (2000), 405–415.

[12] Hideaki Iiduka and Wataru Takahashi, Strong convergence theorems for nonexpansive
mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), 341–

350.

[13] Tae-Hwa Kima and Hong-Kun Xu, Strong convergence of modified Mann iterations
for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006),

1140–1152.

[14] K. Goebel and W. A. Kirk, A Fixed Point Theorem for Asymptotically Nonexpansive
Mappings, Proc. Amer. Math. Soc. 35 (1972), 171–174.

[15] Jong Kyu Kim, Young Man Nam and Jae Yull Sim, Convergence theorems of implicit

iterative sequences for a finite family of asymptotically quasi-nonexpansive type map-
pings, Nonlinear Analysis 71 (2009), e2839–e2848.

Xin-feng He

College of Mathematics and Computer
Hebei University, Baoding 071002, China

E-mail address: hxf@mail.hbu.cn

Yong-chun Xu

Department of Mathematics

Hebei North College, Zhangjiakou 075000, China
E-mail address: xyc2221176@126.com

Zhen He
College of Mathematics and Computer

Hebei University, Baoding 071002, China

E-mail address: zhen he@163.com


