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VISCOSITY METHODS OF APPROXIMATION FOR A

COMMON SOLUTION OF A FINITE FAMILY OF

ACCRETIVE OPERATORS

Jun-Min Chen, Li-Juan Zhang, and Tie-Gang Fan

Abstract. In this paper, we try to extend the viscosity approximation

technique to find a particular common zero of a finite family of accretive
mappings in a Banach space which is strictly convex reflexive and has a

weakly sequentially continuous duality mapping. The explicit viscosity

approximation scheme is proposed and its strong convergence to a solution
of a variational inequality is proved.

1. Introduction

Let E be a Banach space with a dual space of E∗, C a nonempty closed
convex subset of E, and T : C → C a mapping. Recall that T is nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. A point x ∈ C is a fixed point of T
proved Tx = x. Denote by Fix(T ) the set of fixed points of T . f : C → C is a
contraction on C if there exists a constant β ∈ (0, 1) such that ‖f(x)−f(y)‖ ≤
β‖x−y‖, ∀x, y ∈ C. The normalized duality mapping J from E to 2E

∗
is given

by J(x) = {g ∈ E∗ : 〈x, g〉 = ‖x‖2 = ‖g‖2}, x ∈ E where E∗ denotes the dual
space of E and 〈·, ·〉 denotes the generalized duality pairing.

Recall that an operator A with D(A) and R(A) in E is said to be accretive,
if for each xi ∈ D(A) and yi ∈ A(xi) (i = 1, 2), there is a j ∈ J(x2 − x1) such
that

〈y2 − y1, j〉 ≥ 0.

An accretive operator A is m-accretive if R(I + λA) = E for all λ > 0. Denote
by N(A) the zero set of A: i.e.,

N(A) := A−1(0) = {x ∈ D(A) : 0 ∈ Ax}.
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If A is accretive, then we can define, for each r > 0, a nonexpansive single-
valued mapping Jr : R(I+rA)→ D(A) by Jr := (I+rA)−1, which is called the
resolvent of A. we also know that for an accretive operator A, N(A) = Fix(Jr).

Recently, Zegeye and Shahzad [13] have proved the strong convergence theo-
rem for a finite family of accretive operators, let l ≥ 1 be a positive integer, and
define the set Λ = 1, 2, · · · , l. We also can see [6], J. S. Jung also has proved
the strong convergence of an iterative method for finding common zeros of a
finite family of accretive operators.

Theorem 1.1. ([13]) Let E be a strictly convex and real reflexive Banach space
E which has a uniformly Gâteaux differentiable norm, and K a nonempty closed
convex subset of E. Let Ai : i ∈ Λ : K → E be a finite family of m-accretive

operators with
⋂l
i=1N(Ai) 6= ∅. Assume that every nonempty closed bounded

convex subset of E has the fixed point property for nonexpansive mappings. For
any given u, x0 ∈ C, let {xn} be generated by the algorithm

xn+1 = αnu+ (1− αn)Srxn, n ≥ 0, (1)

where Sr = a0I + a1JA1 + a2JA2 + · · ·+ alJAl
with JAi = (I + Ai)

−1, for i =

0, 1, 2, · · · , l, ai ∈ (0, 1),
∑l
i=0 ai = 1, and {αn} a real sequence satisfying the

conditions (C1) limn→∞ αn = 0; (C2)
∑∞
n=0 αn = +∞ and (C3)

∑∞
n=1 |αn+1−

αn| < +∞ or(C3)∗ limn→∞
|αn+1−αn|
αn+1

= 0. Then the sequence {xn} converges

strongly to a common zero of {Ai : i ∈ Λ}.

And in [5], L. Hu, L. Liu generalized and extended the result of Zegeye and
Shahzad [13], they proved the following theorem:

Theorem 1.2. ([5]) Let E be a strictly convex and real reflexive Banach space
E which has a uniformly Gâteaux differentiable norm, and C a nonempty closed
convex subset of E. Let {Ai : i ∈ Λ} : C → E be a finite family of accretive
operators satisfying the following range conditions:

cl(D(Ai)) ⊆ C ⊂
⋂
r>0

R(I + rAi), i = 1, 2, · · · , l.

Assume that
⋂l
i=1N(Ai) 6= ∅. Let {αn}, {βn}, {γn} are three sequences in (0, 1)

and {rn} is a sequence in (0,+∞), satisfying conditions:

(i) (C1)limn→∞ αn = 0; (C2)
∑∞
n=0 αn = +∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) limn→∞ rn = r, r ∈ R+.

For any u ∈ C, x0 ∈ C, the sequence {xn} is given by

xn+1 = αnu+ βnxn + γnSrnxn, n ≥ 0, (2)

where Srn = a0I + a1J
1
rn + a2J

2
rn + · · · + alJ

l
rn with J irn = (I + rnAi)

−1, for

i = 0, 1, 2, · · · , l, ai ∈ (0, 1),
∑l
i=0 ai = 1. Then the sequence {xn} converges

strongly to a common zero of {Ai : i ∈ Λ}.
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The viscosity iterative has been studied by many researchers (see, [7], [8],
[3], [12]). In 2000, Moudafi [7] introduced viscosity approximation method and
proved that if E is a real Hilbert space, for given x0 ∈ C, the sequence {xn}
generated by the algorithm

xn+1 := αnf(xn) + (1− αn)Txn, n ≥ 0, (3)

where f : C → C is a contraction mapping with constant β ∈ (0, 1) and
αn ⊆ (0, 1) satisfies certain conditions, converges strongly to a fixed point of T
in C which is the unique solution to the following variational inequality:

〈(I − f)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T ).

In 2004, Xu [12] studied further the viscosity approximation method for
nonexpansive mappings in uniformly smooth Banach spaces. This result of Xu
[12] extends Theorem 2.2 of Moudafi [7] to a Banach space setting.

In 2006, Paul-Emile Maing é [8] considered the general iterative method

xn+1 = αnTnxn + (1− αn)JArnxn, (4)

for calculating a particular zero of A, an m-accretive oprator in a Banach space
E, Tn being a sequence of nonexpansive self-mappings in E. Under suitable
conditions on the parameters and E, they stated strong and weak convergence
results of {xn}.

Motivated and inspired by above works, in this paper, we introduce and
study the following iterative algorithm in strictly convex reflexive Banach spaces
E with a weakly sequentially continuous duality mapping from E to E∗: for
given x0 ∈ C, let the sequence {xn} be defined by

xn+1 = αnf(xn) + βnxn + γnSrnxn, ∀n ≥ 0, (5)

where Srn = a0I + a1J
1
rn + a2J

2
rn + · · · + alJ

l
rn with J irn = (I + rnAi)

−1 for

i = 1, 2, · · · , l, ai ∈ (0, 1),
∑l
i=0 ai = 1 and {rn} ⊂ (0,+∞). {αn}, {βn} and

{γn} are real sequences in (0, 1) satisfying αn + βn + γn = 1. The present
results improve and extend many known results in the literature.

2. Preliminaries

Recall that a gauge function φ : R+ → R+ such that φ(0) = 0 and
limt→∞ φ(t) = ∞. The duality mapping Jφ : E → E∗ associated with a
gauge function φ is defined by

Jφ(x) = {u∗ ∈ E∗ : 〈x, u∗〉 = ‖x‖‖u∗‖, ‖u∗‖ = φ(‖x‖),∀x ∈ E}.
In the particular case φ(t) = t, the duality map J = Jφ is called the normal

duality map. We note that Jφ(x) = φ(‖x‖)
‖x‖ J(x), for x 6= 0. It is known that if

E is smooth then Jφ is single valued and norm-to-weak∗ continuous(see[2]).
Following Browder [1], we say that a Banach space E has the weak contin-

uous duality mapping if there exists a gauge function φ for which the duality
map Jφ is single valued and weak to weak∗ sequentially continuous (i.e., if
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{xn} is a sequence in E weakly convergent to a point x, then the sequence
{Jφ(xn)} converges weak∗ to Jφ(x)). If Banach space E admits weakly se-
quentially continuous duality mapping J , then by ([4] Lemma 1), we get that
duality mapping J is single-valued. It is well known lp(1 < p <∞) spaces have
a weakly continuous duality mapping Jφ with a gauge function φ(t) = tp−1.
Setting

Φ(t) =

∫ t

0

φ(τ)dτ, t ≥ 0,

one can see that Φ(t) is a convex function and Jφ = ∂Φ(‖x‖), for x ∈ E, where
∂ denotes the subdifferential in the sense of convex analysis.

Recall that a Banach space E is said to be smooth if and only if the duality
mapping J is single-valued. A Banach space E is called strictly convex if for

ai ∈ (0, 1), i ∈ Λ, such that
∑l
i=1 ai = 1, we have ‖a1x1+a2x2+ · · ·+alxl‖ < 1

for xi ∈ U , i ∈ Λ and xi 6= xj for some i 6= j. For in a strictly convex Banach
space we have that if ‖x1‖ = ‖x2‖ = · · · = ‖xl‖ = ‖a1x1 + a2x2 + · · · + alxl‖,
for xi ∈ E, ai ∈ (0, 1), i ∈ Λ and

∑l
i=1 ai = 1, then x1 = x2 = · · · = xl.

Let C a nonempty closed convex subset of E and Q a mapping of E onto
C. Then Q is said to be sunny if Q(Q(x) + t(x−Q(x))) = Q(x) for all x ∈ E
and t ≥ 0. A mapping Q of E into E is said to be a retraction if Q2 = Q. If a
mapping Q is a retraction, then Q(z) = z for every z ∈ R(Q), where R(Q) is
the range of Q. A subset C of E is said to be a sunny nonexpansive retract of
E if there exists a sunny nonexpansive retraction of E onto C and it is said to
be a nonexpansive retract of E if there exists a nonexpansive retraction of E
onto C. If E = H, the metric projection PC is a sunny nonexpansive retraction
from H to any closed convex subset of H.

Lemma 2.1. (see [10]) Let E be a smooth Banach space and C a nonempty
subset of E. Let Q : E → C be a retraction and J the normalized duality
mapping on E. Then the following are equivalent:

(i) Q is sunny nonexpansive;
(ii) 〈x−Q(x), J(y −Q(x))〉 ≤ 0, for all x ∈ E and y ∈ K.

We note that Lemma 2.1 still holds if the normalized duality map J is
replaced with the general duality map Jφ, where φ is a gauge function.

Lemma 2.2. (see [11]) Let {sn} be a sequence of nonnegative real numbers
satisfying the following relation:

sn+1 ≤ (1− αn)sn + αnµn, ∀n ≥ 0,

where (i) 0 < αn < 1, (ii)
∑∞
n=1 αn = ∞. Suppose, either σn = o(αn), or∑∞

n=1 σn <∞, where σn = αnµn or (iii) lim supn→∞ µn ≤ 0. Then sn → 0 as
n→∞.

Lemma 2.3. (see [2]) Let E be a real Banach space. Then for all x, y ∈ E we
get that

Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, jφ(x+ y)〉, jφ ∈ Jφ. (6)
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Lemma 2.4. (The Resolvent Identity) For λ > 0 and µ > 0 and x ∈ E,

Jλx = Jµ(
µ

λ
x+ (1− µ

λ
)Jλx).

Lemma 2.5. (see [9]) Let {xn} and {yn} be bounded sequences in a Banach
space E such that

xn+1 = βnxn + (1− βn)yn, ∀n ≥ 0,

where {βn} is a sequence in (0, 1) such that 0 < lim infn→∞ βn ≤ lim supn→∞ βn <
1. Assume

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.6. ([13]) Let C be a nonempty closed convex subset of a strictly
convex Banach space E. Let {Ai : 1 < i < l} : C → E be a finite family of

accretive operators such that
⋂l
i=1N(Ai) 6= ∅, satisfying the range conditions:

cl(D(Ai)) ⊆ C ⊂
⋂
r>0

R(I + rAi), i = 1, 2, · · · , l.

Let a0, a1, · · · , al be real numbers in (0, 1) such that
∑l
i=0 ai = 1 and Sr =

a0I + a1J
1
r + a2J

2
r + · · ·+ alJ

l
r, where J ir = (I + rAi)

−1 and r > 0. Then Sr is

nonexpansive and Fix(Sr) =
⋂l
i=1N(Ai).

Lemma 2.7. (Demiclosedness Principle) If K is closed convex subset of a real
space E satisfying Opial’s condition and T is a nonexpansive mapping, then
xn ⇀ x and (I − T )xn → y implies that (I − T )x = y.

3. Main results

Throughout this section, we assume:
(i) E is a strictly convex reflexive Banach space with a weakly sequentially

continuous duality mapping Jφ for some gauge φ. C is a nonempty closed
convex subset of E which is also a sunny nonexpansive retract of E.

(ii) The real sequence {αn} satisfies the two conditions: (C1)limn→∞ αn = 0,
and (C2)

∑∞
n=0 αn = +∞.

Theorem 3.1. Let {Ai : 1 < i < l} : C → E be a finite family of accretive
operators satisfying the following range conditions:

cl(D(Ai)) ⊆ C ⊂
⋂
r>0

R(I + rAi), i = 1, 2, · · · , l.

Assume that
⋂l
i=1N(Ai) 6= ∅. Let {αn}, {βn} and {γn} are are three se-

quences in (0, 1) and {rn} is a sequence in (0,+∞), satisfying conditions
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0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and limn→∞ rn = r, r ∈ R+. For
any x0 ∈ C, the sequence {xn}is given by

xn+1 = αnf(xn) + βnxn + γnSrnxn, n ≥ 0, (7)

where f : C → C is a contraction with constant β, and Srn = a0I + a1J
1
rn +

a2J
2
rn + · · · + alJ

l
rn with J irn = (I + rnAi)

−1, for i = 0, 1, 2, · · · , l, ai ∈ (0, 1),∑l
i=0 ai = 1. Then the sequence {xn} converges strongly to x∗ = Q(f(x∗)),

which is a common zero of {Ai : i ∈ Λ} . Moreover, x∗ is the solution of the
variational inequality:

〈(I − f)x∗, J(x∗ − x)〉 ≤ 0, ∀x ∈
l⋂
i=1

N(Ai). (∗)

Proof. By Lemma 2.6, this implies that F := Fix(Srn) =
⋂l
i=1N(Ai) 6= ∅.

Take p ∈ F , we obtain

‖xn+1 − p‖ = ‖αn(f(xn)− p) + βn(xn − p) + γn(Srn − p)‖
≤ αn‖f(xn)− p‖+ (1− αn)‖xn − p‖
≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖+ (1− αn)‖xn − p‖
≤ [1− (1− β)αn]‖xn − p‖+ αn‖f(p)− p‖.

By induction, we obtain for all n ≥ 0,

‖xn − p‖ ≤ max{‖x0 − p‖,
1

1− β
‖f(p)− p‖}.

Therefore, the sequences {xn}, {f(xn)} and {Srnxn} are bounded. Rewrite
the iterative process (7) as follow:

xn+1 = βnxn + (1− βn)
αnf(xn) + γnSrnxn

1− βn
= βnxn + (1− βn)yn,

where yn = αn

1−βn
f(xn) + γn

1−βn
Srnxn. We get that {yn} is also bounded. After

some manipulation this yields

yn+1 − yn =
αn+1

1− βn+1
f(xn+1)− αn

1− βn
f(xn)

+

(
1− αn+1

1− βn+1

)
(Srn+1

xn+1 − Srnxn)

+

(
αn

1− βn
− αn+1

1− βn+1

)
Srnxn.
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By the resolvent identity, it follows that

‖J irn+1
xn+1 − J irnxn‖ = ‖J irn(

rn
rn+1

xn+1 + (1− rn
rn+1

)J irn+1
xn+1)− J irnxn‖

≤ ‖ rn
rn+1

(xn+1 − xn) + (1− rn
rn+1

)(J irn+1
xn+1 − J irnxn)‖

≤ rn
rn+1

‖xn+1 − xn‖+ |1− rn
rn+1

|M,

where M = supn≥1{xn − J irn+1
xn}. Since Srn = a0I +

∑l
n=1 aiJ

i
rn , we have

‖Srn+1
xn+1 − Srnxn‖ = ‖a0(xn+1 − xn) +

l∑
n=1

ai(J
i
rn+1

xn+1 − J irnxn)‖

≤ a0‖xn+1 − xn‖+

l∑
n=1

ai‖J irn+1
xn+1 − J irnxn‖

≤
[
rn
rn+1

+ a0(1− rn
rn+1

)

]
‖xn+1 − xn‖

+ (1− a0)|1− rn
rn+1

|M.

It follows that

‖yn+1 − yn‖ − ‖xn+1 − xn‖

≤ ‖ αn+1

1− βn+1
f(xn+1)− αn

1− βn
f(xn)‖+ (1− αn+1

1− βn+1
)‖Srn+1

xn+1 − Srnxn‖

+ | αn
1− βn

− αn+1

1− βn+1
|‖Srnxn‖ − ‖xn+1 − xn‖

≤ αn+1

1− βn+1
‖f(xn+1)− f(xn)‖+ | αn

1− βn
− αn+1

1− βn+1
|‖f(xn)‖

+ (1− αn+1

1− βn+1
)[
rn
rn+1

+ a0(1− rn
rn+1

)]‖xn+1 − xn‖

+ (1− αn+1

1− βn+1
)(1− a0)|1− rn

rn+1
|M

+ | αn
1− βn

− αn+1

1− βn+1
|‖Srnxn‖ − ‖xn+1 − xn‖

=

{(
1− αn+1

βn+1

)[
rn
rn+1

+ a0(1− rn
rn+1

)

]
+

αn+1

1− βn+1
β − 1

}
‖xn+1 − xn‖

+ (1− αn+1

1− βn+1
)(1− a0)|1− rn

rn+1
|M

+ | αn
1− βn

− αn+1

1− βn+1
|(‖Srnxn‖+ f‖(xn)‖),

from {xn}, {f(xn)} and {Srnxn} are bounded, limn→∞ rn = r, limn→∞ αn =
0, we have

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.
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Consequently, by Lemma 2.5, we obtain limn→∞ ‖yn − xn‖ = 0.

‖xn+1 −
βnxn + γnSrnxn

1− αn
‖

= ‖αnf(xn) + (1− αn)
βnxn + γnSrnxn

1− αn
− βnxn + γnSrnxn

1− αn
‖

≤ αn‖f(xn)− βnxn + γnSrnxn
1− αn

‖

→ 0 (n→∞),

and
‖xn+1 − xn‖ = ‖αnf(xn) + γnxn + γnSrnxn − xn‖

= ‖αnf(xn) + γnSrnxn − (αn + γn)xn‖
≤ (1− βn)‖yn − xn‖
→ 0.

Obviously,

‖xn −
βnxn + γnSrnxn

1− αn
‖ =

γn
1− αn

‖xn − Srnxn‖.

By the conditions limn→∞ αn = 0 and lim supn→∞ βn < 1, it follows that
lim infn→∞ γn > 0. Therefore, we obtain

‖xn−Srnxn‖ ≤
1− αn
γn

‖xn−xn+1‖
(
‖xn+1 −

βnxn + γnSrnxn
1− αn

‖
)
→ 0 (n→∞).

By the resolvent identity and Srn = a0I +
∑l
i=1 J

i
rn , this implies that

‖Srnxn − Srxn‖ = ‖
l∑
i=1

ai(J
i
rnxn − Jrxn)‖

≤
l∑
i=1

ai‖J lr(
r

rn
xn + (1− r

rn
)J irnxn)− J irxn)‖

≤
l∑
i=1

ai‖(
r

rn
xn + (1− r

rn
)J irnxn)− xn)‖

≤
l∑
i=1

ai|1−
r

rn
|‖xn − J irnxn‖ → 0 (n→∞).

Hence, we have

‖xn − Srxn‖ ≤ ‖xn − Srnxn‖+ ‖Srnxn − Srxn‖ → 0 (n→∞).

Next we shall show that

lim sup
n→∞

〈x∗ − f(x∗), Jφ(x∗ − xn+1)〉 ≤ 0.
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Since E is reflexive and {xn} is bounded, we may assume xnk
⇀ ω such that

lim sup
n→∞

〈x∗ − f(x∗), Jφ(x∗ − xn+1)〉 = lim sup
k→∞

〈x∗ − f(x∗), Jφ(x∗ − xnk
)〉.

From the Dimclosedness Principle, we have ω ∈ F . On the other hand, from
the standard characterization of retraction onto F and the assumption that the
duality mapping Jφ is weakly sequentially continuous, Lemma 2.1 gives that

lim sup
n→∞

〈x∗ − f(x∗), Jφ(x∗ − xn+1)〉 = lim sup
k→∞

〈x∗ − f(x∗), Jφ(x∗ − xnk
)〉

= 〈x∗ − f(x∗), Jφ(x∗ − ω) ≤ 0.

From Lemma 2.3, we get that

Φ(‖xn+1 − x∗‖)
= Φ(‖αn(f(xn)− f(x∗)) + βn(xn − x∗) + γn(Srnxn − x∗)

+ αn(f(x∗)− x∗)‖)
≤ Φ(‖αn(f(xn)− f(x∗)) + βn(xn − x∗) + γn(Srnxn − x∗)‖)

+ αn〈f(x∗)− x∗, Jφ(xn+1 − x∗)〉
≤ Φ((αnβ + βn + γn)‖xn − x∗‖) + αn〈f(x∗)− x∗, Jφ(xn+1 − x∗)〉
≤ (1− αn(1− β))Φ(‖xn − x∗‖) + αn〈f(x∗)− x∗, Jφ(xn+1 − x∗)〉.

By the Lemma 2.2, we have xn → x∗ as n → ∞. Moreover, x∗ satisfying
condition (∗) follows from the property of Q. To show that it is unique, let
y∗ ∈ F be another solution of the variational inequality (∗) in F . Then adding
〈f(x∗) − x∗, Jφ(y∗ − x∗)〉 ≤ 0 and 〈f(y∗) − y∗, Jφ(x∗ − y∗)〉 ≤ 0, we have
(1− β)φ(‖x∗ − y∗‖)‖x∗ − y∗‖ ≤ 0. This implies that x∗ = y∗ �

Theorem 3.2. Let {Ai : i ∈ Λ} : C → E be a finite family of accretive
operators satisfying the following range conditions:

cl(D(Ai)) ⊆ C ⊂
⋂
r>0

R(I + rAi), i = 1, 2, · · · , l.

And assume that
⋂l
i=1N(Ai) 6= ∅. Let {αn}, {βn}, {γn} be three sequences in

(0, 1) and r > 0 a real number satisfying 0 < lim infn→∞ βn ≤ lim supn→∞ βn <
1. For any x0 ∈ C, the sequence {xn} is given by

xn+1 = αnf(xn) + βnxn + γnSrxn, n ≥ 0,

where Sr = a0I+a1J
1
r +a2J

2
r +· · ·+alJ lr, with J ir = (I+rAi)

−1 for 0 < ai < 1,

i = 0, 1, 2, · · · , l,
∑l
i=0 ai = 1. Then the sequence {xn} converges strongly to

x∗, which is a common zero of {Ai : i ∈ Λ} and the unique solution of the
variational inequality

〈(I − f)x∗, J(x∗ − x)〉 ≤ 0, ∀x ∈
l⋂
i=1

N(Ai).
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As direct consequences of Theorem 3.1 and Theorem 3.2, we obtain the two
corollaries below:

Corollary 3.3. Let {Ai : i ∈ Λ} : C → E be a finite family of m-accretive op-

erators. Assume that
⋂l
i=1N(Ai) 6= ∅. Let {αn}, {βn}, {γn} be three sequences

in (0, 1) and r > 0 a real number satisfying the condition 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. For any x0 ∈ C, the sequence {xn} is given by

xn+1 = αnf(xn) + βnxn + γnSxn, n ≥ 0,

where S = a0I + a1JA1 + a2JA2 + · · · + alJAl
, with JAi = (I + Ai)

−1 for

0 < ai < 1, i = 0, 1, 2, · · · , l,
∑l
i=0 ai = 1. Then the sequence {xn} converges

strongly to x∗, which is a common zero of {Ai : i ∈ Λ} and the unique solution
of the variational inequality

〈(I − f)x∗, J(x∗ − x)〉 ≤ 0, ∀x ∈
l⋂
i=1

N(Ai).

Corollary 3.4. Let A : C → E be an m-accretive operator such that N(A) 6= ∅.
Let {αn}, {βn}, {γn} be three sequences in (0, 1) and rn ∈ (0,+∞), satisfying
the conditions 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, and limn→∞

rn
rn+1

= 1.

For any x0 ∈ C, the sequence {xn} is given by

xn+1 = αnf(xn) + βnxn + γnJrnxn, n ≥ 0,

where Jrn = (I + rnA)−1. Then the sequence {xn} converges strongly to x∗,
which is a zero of A and the unique solution of the variational inequality

〈(I − f)x∗, J(x∗ − x)〉 ≤ 0, ∀x ∈ N(A).

Theorem 3.5. Let {Ai : 1 < i < l} : C → E be a finite family of accretive
operators satisfying the following range conditions:

cl(D(Ai)) ⊆ C ⊂
⋂
r>0

R(I + rAi), i = 1, 2, · · · , l.

Assume that
⋂l
i=1N(Ai) 6= ∅. Let {αn}, {βn} and {γn} are three sequences in

(0, 1) and {rn} is a sequence in (0,+∞), satisfying conditions 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1 and limn→∞ rn = r, r ∈ (0,+∞). For x0 ∈ C, the sequence
{xn} is given by

xn+1 = αnf(xn) + (1− αn)(λxn + (1− λ)Srnxn), ∀n ≥ 0,

where f : C → C is a contraction with constant β, and Sr = a0I + a1JA1 +
a2JA2

+ · · · + alJAl
with JAi

= (I + Ai)
−1, for i = 0, 1, 2, · · · , l, ai ∈ (0, 1),∑l

i=0 ai = 1. Then the sequence {xn} converges strongly to x∗, which is a
common zero of {Ai : i ∈ Λ} and the solution of the variational inequality:

〈(I − f)x∗, J(x∗ − x)〉 ≤ 0, ∀x ∈
l⋂
i=1

N(Ai). (∗)
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Proof. Taking βn = (1− αn)λ, ∀n ∈ N , we have

lim
n→∞

βn = lim
n→∞

(1− αn)λ = λ ∈ (0, 1).

By theorem 3.1, we obtain the conclusion. �
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