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CONVERGENCE THEOREMS OF A FINITE FAMILY OF
ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE
MAPPINGS IN BANACH SPACES

(GURUCHARAN SINGH SALUJA

ABSTRACT. In this paper, we study multi-step iterative algorithm with
errors and give the necessary and sufficient condition to converge to com-
mon fixed points for a finite family of asymptotically quasi-nonexpansive
type mappings in Banach spaces. Also we have proved a strong conver-
gence theorem to converge to common fixed points for a finite family of
said mappings on a nonempty compact convex subset of a uniformly con-
vex Banach spaces. Our results extend and improve the corresponding
results of [2, 4, 7, 8, 9, 10, 12, 15, 20].

1. Introduction

Let K be a subset of normed space F and T: K — K be a mapping. Then
(1) T is said to be an asymptotically nonexpansive mapping [5], if there
exists a sequence {k,} C [1,00) with lim, . k, = 1 such that

[T"x =T y|| < kn |z —yll, Vo,yc K. (1)
(2) If for each n € N, there are constants L > 0 and « > 0 such that
|T"x — T y|| < L ||z —y||*, Va,y €K, (2)

then T is called a uniformly (L, «)-Lipschitz mapping. Every asymptotically
nonexpansive mapping is a uniformly (L, 1)-Lipschitz mapping.

(3) T is said to be an asymptotically quasi-nonexpansive mapping, if F(T) #
() and there exists a sequence {k,} C [1,00) with lim, . k, = 1 such that

7"z —p|l < k,llz—p|, Yx €K and pe F(T). (3)

(4) T is said to be an asymptotically quasi-nonexpansive type mapping [13]
if

lim sup sup (HT"JE—]DH2 - ||a;—p||2) <0. (4)
n—o0 z€K,peF(T)
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From the above definitions, it follows that if F'(T) is nonempty, then asymp-
totically nonexpansive mappings and asymptotically quasi-nonexpansive map-
pings are all special cases of asymptotically quasi-nonexpansive type mappings.
But the converse does not hold in general.

In 1973, Petryshyn and Williamson [12] gave the necessary and sufficient
conditions for Mann iterative sequence (cf.[11]) to converge to fixed points of
quasi-nonexpansive mappings. In 1997, Ghosh and Debnath [4] extended the
results of Petryshyn and Williamson [12] and gave the necessary and sufficient
conditions for Ishikawa iterative sequence to converge to fixed points for quasi-
nonexpansive mappings.

Liu [9] extended the results of [4, 12] and gave the necessary and sufficient
conditions for Ishikawa iterative sequence with errors to converge to fixed points
of asymptotically quasi-nonexpansive mappings.

Iterative techniques for approximating fixed points of asymptotically non-
expansive and asymptotically quasi nonexpansive mappings in Banach spaces
have been studied by many authors; See, [5, 8, 9, 15, 16, 17, 18] and the refer-
ences therein. Related work can be found in [2, 7, 13, 20] and many others.

Recently, Tang and Peng [19] study the following iteration scheme in Banach
space:

Let {T; : ¢« = 1,2,...,k}: K — K, where K is a nonempty subset of a
Banach space F, be a finite family of uniformly quasi-Lipschitzian mappings.
Let 1 € K, then the sequence {z,} is defined by

Tp+1 = AgnTn + bknTlgy(k—l)n + CrnUkn,
Yk—1)n = Ak—1)nTn + bk 1)n T 1Y(k—2)n T Ck—1)nU(k—1)ns

Yk—2)n = Ak—2)nTn + bk—2)nTh—2Y(k—3)n T Ck—2)nU(k—2)n>

— n
Yon = A2nTn + b2nT2 Yin + ConU2n

n
Yin = Q1nTn + blnT1 Ty + CinUlin, n 2 17

where {a;n}, {bin}, {cin} are sequences in [0, 1] with a;, + b, + ¢ = 1 for all
i=1,2,....,kand n > 1, {ujn, ¢ =1,2,...,k, n > 1} are bounded sequences
in K. Also, they gave the necessary and sufficient condition to converge to
common fixed points for a finite family of said mappings.

Remark 1. The iterative algorithm (5) is called multi-step iterative algorithm
with errors. It contains well known iterations as special case. Such as, the
modified Mann iteration (see, [16]), the modified Ishikawa iteration (see, [18]),
the three-step iteration (see, [20]), the multi-step iteration (see, [7]).

The purpose of this paper is to study the multi-step iterative algorithm with
bounded errors (5) for a finite family of asymptotically quasi-nonexpansive
type mappings to converge to common fixed points in Banach spaces. The
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results obtained in this paper extend and improve the corresponding results of
[2,4,7,8,9, 10, 12, 15, 20] and many others.

2. Preliminaries
The following lemmas will be used to prove the main results of this paper:

Lemma 2.1. ([17]) Let {an}, {bn} be sequences of nonnegative real numbers
satisfying the inequality

Ap1 San+bn, TLZ 1.
If > by < co. Then

(a) limy,— o0 @y exists.
(b) Ifliminf,, o a, = 0, then lim, o a, = 0.

Lemma 2.2. (Schu [16]) Let E be a uniformly convexr Banach space and 0 <
a<t,<b<1 foraln>1. Suppose that {x,} and {y,} are sequences in E
satisfying

limsup ||z,|| <r, lmsup||ly,|| <,
n—o00 n—00

lim ||tnxn + (1 - tn)yn” =

n—oo

for some r > 0. Then

lim ||.177, - ynH =0.
n— o0

3. Main results

In this section, we prove strong convergence theorems of multi-step itera-
tive algorithm with bounded errors for a finite family of asymptotically quasi-
nonexpansive type mappings in a real Banach space.

Theorem 3.1. Let E be a real arbitrary Banach space, K be a nonempty
closed convex subset of E. Let {T; :i=1,2,...,k}: K — K be a finite family
of asymptotically quasi-nonexpansive type mappings. Let {x,} be the sequence
defined by (5) with Y7 | bin < 00 and >_.° | ¢in < 00 foralli=1,2,... k. If

F=n;_F(T;) # 0. Then the sequence {x,} converges strongly to a common
fized point of {T; : i = 1,2,...,k} if and only if liminf d(x,,F) = 0, where
n—oo

d(x,F) denotes the distance between x and the set F.

Proof. The necessity is obvious and it is omitted. Now we prove the sufficiency.
Since {w;n, ¢ =1,2,...,k, n > 1} are bounded sequences in K, therefore there
exists a M > 0 such that

M:max{supﬂum—pﬂ, i:1,2,...,k}.
n>1
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Let p € F, it follows from definition (4) and for ¢ = 1,2,...,k, we have

nmsup{ sup [(I72 = pll = lla =l ) x (127 =l + 1 —pn)}}

n— 00 ze K, pe
. 2 2
—timsup{ sup [ - ol - o - ol?] |
n—00 zeK,peF
<0.
(6)
Therefore for i = 1,2,...,k, we have
imsup { sup (Iz7e ] = o=l | <o @
n—00 zeK,peF
This implies that for any given ¢ > 0, there exists a positive integer ny such
that for all n > ng and for ¢+ = 1,2,...,k, we have
sup {7 —pll ~ o~ pll | <. (8)
rzeK,peF

Since {zn}, {yin}, -, {¥k—-1)n} C E, we have
|TV'2n — pll = len —pll <&, VpEF, Vn=ny,
175 y1n = pll = ly1in —pll <&, ¥pEF, Vn>ny,
175" y2n — pll = ly2n —pll <&, VpeF, Vn=>ny,

| TR yk—1yn — P|| = |[¥k—1)n — p|| <& VPEF, Vn>n.
Thus for each n > 1 and for any p € F, using (5) and (9), we note that

Hyln - pH = Halnxn + blnTlnxn + C1nU1n _pH
= |larn(zn — p) + bin(T7'Tn — p) + c1n(uin — p)|l
< arp |2 = pll + bin [T 20 — pl + c1n |lurn — pl|

< anllon =pll+ bun [ lon = pll 4] o =pl
< (am + bln) |z — || + b1ne + c1nM
= (1 — cln) |zn — p|l + b1ne + c1nM
<|lzn —pl| + bine + c1n M
= [lzn — pll + A1n
where Ay, = bi,e+c1, M, since by assumption Y7 by, < ocoand > o~ c1py <
00, it follows that >~ 7 | A;, < .
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Furthermore, by inequality (9) and (10), we obtain
[y2n — Pl = llazn@n + b2nT5'y1n + c2ntizn — pl|

= [lagn (2 — p) + b2n(T5'y1n — p) + c2n(u2n — p)||
< azp |20 = pll + bon [[T3Y10 — Il + c2n [[uzn — pll
< azn |20 = pll + ban | lly1n — pll + 2] + c2n lJuzn — ]
< azp |2 — Pl + bon [|y1n — Il + b2ne + c2n M
< gy [ = pll + ban | n = pll + Avn | + bane + canM
< (agn + ban) |20 — p|| + bon A1n + bane + c2n M
= (1 - czn) |z — pll + b2nArn + bane + can M
< |len — pl| + A1p + bone + con M
= [[&n — pll + A2

where As, = A1y, + bone + c2, M, since by assumption Y -, b, < 00, D00,
Con <00 and Y o7 | Ay, < oo, it follows that 07 | A, < co. Similarly, using
(9) and (11), we see that

[y3n — pll = llasn(@n — ) + bsn(T5'y2n — p) + c3n(usn — p)
< agp [|zn — pll + b3n [ T5'y2n — Il + can lusn — pll
< agn [z = Il + bsa [ lyzn = pll + ] + can Jusn — ol
< azn |70 — pl| + b3n |ly2n — pll + b3ne + c3n M
< asp ||n — pl| + b3n [ |z — pl| + Azni| + b3ne + c3n M (12)
< (agn + b3n) |0 — p|| + banAon + bspe + c3n M
= (1 = c3n) [|zn — Pl + b3pA2n + bsne + c3, M
< |lwn — pl| + A2p + b3ne + csn M
= || — pl| + Ass

where A3, = A, + bgne + c3, M, since by assumption Y| bs, < 00, Yoo,
Can < 0o and Y 2 | Ay, < 00, it follows that > | As, < co. Continuing the
above process, using (5) and (9), we get

[#ns1 = pll = [|arn(@n — ) + brn (T Y(—1)n — D) + Crn(tin — )|
< agn |20 = Il + bkn || T Y—1)n — || + ¢k lurn — pll
< ko llon = pll + bn | [9—1yn = ]| + 2] + b 1tk = 2
< agn 20 = DIl + bkn [[Y(k—1)n — P|| + Okne + crnM
< agn |Tn — Dl + bkn [ l|lzn — pl| + A(k,l)n} + brne + cn M
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< (akn + bin) |20 — || + bknAs—1yn + bkne + conM
= (1= cpn) llzn — Dl + benAg—1)n + bine + con M
< zn = pll + Ag—1)n + bine + cxnM
= [|zn — pll + Agn
where Agn, = Ak—1)n + bkn€ + cknM, since by assumption Z?:l brn < 00,

> Ckn < 0o and Yoo Ag—1yn < 00, it follows that S A < 00. By
Lemma 2.1, we know that lim d(z,,F) = 0.
n—oo

(13)

Next, we will prove that {z,} is a Cauchy sequence. From (13) we have
Zn+m — Pl < |Tntm-1 —pll + Ak(n+m—1)

< ||xn+m72 - pH + Ak(n+m72) + Ak(nerfl)

< ||.’En+m,2 - p” + Ak(n+m—1) + Ak(n+m—2)]
<N Zngm-3 =2l + | Arnam—1) + Ak(npm—2) + Ak(n+m—3):|
<..
<..
< ||$n+m_3 7p|| + Ak:(n-‘rm—l) + Ak(n+m—2) +o A+ Akn]
n+m—1
<loa—pl+ 3 Au
i=n

(14)
for all p € F and m,n € N. Since lim d(z,,F) = 0, for each £ > 0, there
n—oo

exists a natural number n; such that for n > nq,

n+m—1
€ €
d(xn, F) < 3 and izgn A < 3 (15)

Hence, there exists a point ¢ € F such that

€
e — all < 5. (16)
By (14), (15) and (16), for all n > ny and m > 1, we have

Zntm — Zull < |Tnsm —qll + |z — 4|

n+m—1
< ||xn1 - (J|| + Z Apgi + ||$n1 - QH
i:nl
n+m-—1 (17)
<2an, —al+ > Awi
i:n1
3 e
2.2 4 - =¢.
< 1 + 5 €
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This implies that {x, } is a Cauchy sequence. Since E is complete, there exists
a p; € E such that x, — p; as n — oc.

Now we have to prove that p; is a common fixed point of {T; : 4 = 1,2,...,k},
that is, p1 € F.

By contradiction, we assume that p; is not in F. Since F = Nk_, F(T}) is
closed in Banach spaces, d(p1, F) > 0. So for all ps € F, we have

Ip1 = pall < llpy — @l + [0 — p2ll- (18)
By the arbitrary of ps € F, we know that
d(p1, F) < llp1 — @l + d(zn, F). (19)

By lim d(z,,F) = 0, above inequality and x,, — p1 as n — 0o, we have
n—oo

d(p1, F) =0, (20)

which contradicts d(py,F) > 0. Thus p; is a common fixed point of the map-
pings {T; : i =1,2,...,k}. This completes the proof. |

Theorem 3.2. Let K be a nonempty compact conver subset of a uniformly
convexr Banach space E and for i = 1,2,...,k, let T;: K — K be a finite
family of uniformly (L;,;)-Lipschitz and asymptotically quasi-nonezpansive
type mappings. Let {x,} be the sequence defined by (5) with >~ | by < o0,
Yo tin<ooand 0 < B < by, < B <1 forali=12...k IfF=
NE_F(T;) # 0. Then the sequence {x,} converges strongly to a common fized
point of the mappings {T; : i =1,2,...,k}.

Proof. From (13), we have

[Znt1 = pll < [lzn = pll + Ak,

where Agp = Ag—1)n + bkn€ + ckn M, since by assumption Ziozl brn < 00,
S < 00 and Y07 A_1), < oo, it follows that 7| Ap, < o0.
By Lemma 2.1, we know that lim, _, ||z, — p|| exists for all p € F. Let
lim,, o ||&n, — p|| = ¢ for some ¢ > 0. Then, from (10), we note that

limsup [[y1n — |l < limsup (0 = pl + A1)
< limsup ||z, — pl| = ¢,
n—oo

and

limsup |17z, — p|| < limsup ( |zn — pll + 5)
n— 00 n—oo

<c-+e.

Since € > 0 is arbitrary given, so we have

limsup ||T7'x, — p|| < ¢, (22)
n—oo
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and

lim ||y1n - pH = lim ||aflnxn + blnTlnxn + CinUin — pH
n—00 n—00

= lim ||(1 — b1y — Cln)xn + blnTln-Tn + CipUin — p”
n— 00

= Tim (1= bin) (@0 — p+ cin(uin — 7)) (23)
+b1n (T 2n — D + cin(Uin — z5))||
= C.

Again since lim,_, ||2n — p|| exists, so {z,} is a bounded sequence in K. By
virtue of condition Y 7, ¢;, < 0o for all i = 1,2,...,k and the boundedness
of the sequence {z,} and {u1,}, we have

limsup [|zn = p + c1n(urn — )| < limsup [z, — p|
n—o00 n—o00

+ lim sup (cm lurn — @nl| ) (24)

n— oo

<c peF.
It follows from (22) that

limsup || 17"z, — p + c1n(v1n — Tn)|| < limsup || Tz, — p|

+timsup (ex Jurn — 2] )

n— oo

< limsup ( [l — pl] +2)

n—roo

+ lim sup (cln |1 — 2n] )

n—oo

<c+e peF.

Since € > 0 is arbitrary given, so we have

limsup || T1'xn, — p + cin(u1n — x,)|| < c (25)
n— oo
Therefore, from (23)-(25) and Lemma 2.2 we know that
nhﬁnéo TV xy, — x| = 0. (26)

Again from (11), we note that
lim sup ||y2, — p|| < limsup ( llzn — p|| + Agn)
n—oo n—o00
<limsup ||z, — p| =¢,
n—oo
and from (21), we note that

limsup || 75'y1, — p|| < limsup ( ly1n — ol + 6)
n—oo

n— oo

<c+e.
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Since € > 0 is arbitrary given, so we have

limsup || T5'y1n — 2| < c.

n—oo

Next, consider

limsup [|75'y1n — P + con(t2n — Zn)|| < limsup || 15 y1n — p||
n—oo n—oo

+ lim sup ((:2” [luan — x| )

n—oo

< limsup ( ly1n — pll + 5)
n—oo

+ lim sup <02n lugn — x| )
n—oo
<c+e peF.
Since € > 0 is arbitrary given, so we have

limsup || 75'y1n — p + con (U2, — zp)|| < c

n— o0

Also,
limsup ||z, — p + can(uzn — )| < limsup |2, — p||
n—o0 n— o0
+timsup (e [Juzn — 20l )
n— 00
<c¢ pEF,
and

lim ||y2n - p” = lim ||a2nxn + b2nT2ny1n + ConU2n — p”
n—00 n— 00

= lim ||(1 - b2n - CQn)mn + anTQnyln + ConpU2n — pH

n— o0

= nh—>ngo ||(1 - b2n)($n —p+ C2n(u2n - l‘n))
+ an(TQnyln —-p+ C2n(u2n - xn))”

= C.

Therefore, from (29)-(31) and Lemma 2.2 we know that

lim ||75'y1n — 2, = 0.

n—oo
Now, we shall show that lim,,_,« || 79'y2n — zn| = 0. For each n > 1,

[2n = pll < IT5'Y1n — all + 175" y1n — Pl
< IT3yin =l + (i —pll +<).
Using (32), we have
c= lim ||x, — p|
n—oo

< liminf ||y1, — || -
n— 00

43

(29)

(31)

(32)

(33)
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It follows from (21) that
c¢c= lim |z, —p||
n—oo
< T -
< liminf [ly1, —p|| (34)
< limsup ||y1, — pl| < ec.
n— oo
This implies that
lim [ly1, —pll = c. (35)
n—oo
On the other hand, we have
Han _p” < (Hxn _pH + AQn)a n > 17

where Zzo:l Ay, < 0o. Therefore

limsup [[yon — || < limsup ( [l = pll + Az ).
n—oo

n—oo (36)
<g,
and hence
lim sup || 75 y2n, — p|| < limsup ( lly2n — pll + 6)
n— 00 n—oo
<c+e.
Since € > 0 is arbitrary given, so we have
lim sup ||T5'y2, — p|| < c. (37)
n—oo
Next, consider
lim sup “T?:lan —Dp + C3n(u3n - xn)“ S lim sup ||T?:Ly2n - p”
n— 00 n—oo
+ lim sup <03n lusn — an)
n—oo
< lim sup ( ly2n — pIl + 6)
n— o0
+timsup (can [Jusn — 2] )
n—oo
<c+e peF.
Since € > 0 is arbitrary given, so we have
lim sup ||75'Y2n — P + C3n(usn — 2n)|| < c. (38)
n—oo
Also,
limsup ||z, — p + c3n(usn — )| < limsup ||, — p||
n—oo n— oo

+ lim sup (an luzn — x| ) (39)

n— oo

<c peF,
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and
lim ||y3n - p” = lim ||a3nxn + bSnT3ny2n + C3pU3n — p”
n—oo n—roo
= lim ”(1 — b3y, — CSn)xn + b3nT§Ly2n + C3pU3n — pH
n—oo
= lim [|[(1 — b3n)(zn — p + can(usn — x,))
n—oo
+ b&n(T??an - P + CSn(USn - xn))”
=c.
Therefore, from (38)-(40) and Lemma 2.2 we know that
lim ||T5'y2n — 2, = 0.
n—oo
Similarly, by using the same argument as in the proof above, we have
Jim (|77 yn = 2l = 0,

forallt=2,3,... k.

Since K is compact, {z,};2; has a convergent subsequence {z,,}32;.

lim z,, = p.
J—00

Then from (5) and (42), we have

Hx”ﬁ‘l — T, H = bkn,- ’T:jy(kfl)nj — Tn, H + Ch,, ‘uknj — T,
— 0, as j — oo.
From (5) and (26), we have
1910 = Znll < bin [ T7" %0 — znll + c1n [usn — zn||
— 0, as n — oo.
Again from (26) and (43), we have

. Uz
lim 777 %, = p.
j—o0

Since lim;_, Tp,+1 = P, We have

. mni+1
Jlggo Ty Tp,41 = p-

From (44), (46) and (47), we have
0 < |lp—Thpll

n;+1 n;+1 ni+1
S Hp - Tl ! InJ-'rlH + HTl ! xnj-l—l - T1 ! xnj

"

< o= 20 |+ L 1 = |+ L [T, ]

—0 as j — oo.

45

(40)

(45)

(46)

(47)
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From (32) and (43), we have
lim 757 y1,, = p. (49)
j—o0

Since lim; ;o0 ¥y, +1 = p, we have

lim 737 1,41 = p. (50)

J]—00

From (44), (45), (49) and (50), we have

0 <|p—Topl

< Hp— Ty" ylnj-i-lH + HT;] Yin, 41 — 15° $nj+1H

1

ni+1 mni+ ni+1 ni+1
+ HT2 ! -Tnj+1 - T2 ’ fEn]. T2 ! xnj - T2 ! ylnj

|

n;j+1
+ HTQJ ylnj 7T2p” (51)

< Hp - Tzanrlylnj-i-lH + Lo Hylnj"rl - JﬁnﬁrlHa2

1™ 1™

+ L2 Hxanrl — T, + L2 Han — Yin,
+ Lo [| T3 y1n, — 1

—0 as j— o0.

a2

Now, from (5) and (32), we have

||y2n - mnH S b2n HT2ny1n - an + Can ||u2n - an

— 0, as n — oo.
Again from (41) and (43), we have
Jim T3 yan, = p. (53)
Since lim; o0 ¥y, +1 = p, we have

lim 737y, 11 = p. (54)

j—o0
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From (44), (52), (53) and (54), we have
0<|[lp—Tsp|
< Hp _ T;j+1y2nj+1H + HT?:LJJrl?Jan-i-l B TgnjﬂxnjHH

ni+1 ni+1 ni+1 ni+1
+HT3] Tn41 — 1377 Ty, T37 " wn, — 137" Yon,

|

+ HT§”+1y2nj - TspH

(55)
< Hp - T3nj+1y2nj+1H + Ly ||ly2n,+1 — l“nj-s-l”%
+Ls Hx"j‘*‘l — T, Ha3 +Ls Hx"a — Yo, Has
+ L || T3 yan, — p||™
—0 as j— oo.
Similarly, from (5) and (42), we have
l9n = @nll < Beyn [T sy2n = 2nll + i uenn =2l
— 0, as n— .
Again from (42) and (43), we have
. T4 _
Jim T Ye-1yn; = P (57)
Since lim;_, Tp,+1 = P, We have
. nj+1
jhjgo T Yk—1yn;+1 =D- (58)
From (44), (56), (57) and (58), we have
0 < |lp—Tp|
< Hp - T;Lj+1y(k—1)nj+1" + HT;:LJHy(k—nnJH - T;?“%_,»HH
+ HT:ﬁlxnjﬂ - T;:Ljﬂa:nj + HT,;”HJJM - T:ﬁly(;@q)nj
uz 1
[ v am, = T (59)

< HP - T;?] y(k—l)nj—&-lH + L ||y(k—1)n,~+1 - xnj+1||ak

L [, 41 = @, [ + L |2n, = v, ™

+ Lic | T Y1y, — 2™
—0 as j — oo.

Hence
lim [lp — Tipl| =0, Vi=1,2,....k. (60)
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Thus p is a common fixed point of the mappings {T; : i = 1,2,...,k}. Since the
subsequence {z,; }52; of {z,};2, converges to p and lim, o ||z, — p|| exists,
we conclude that lim,, . z,, = p. This completes the proof.

Remark 2. Theorem 3.1 extends and improves the corresponding result of Khan
et al. [7] and Tang and Peng [19] to the case of more general class of asymptot-
ically quasi-nonexpansive or uniformly quasi-Lipschitzian mappings considered
in this paper.

Remark 3. Theorem 3.1 also extend and improve the corresponding results
of [2, 4, 8,9, 12, 15]. Especially Theorem 3.1 extends and improves Theorem
1 and 2 in [9], Theorem 1 in [8] and Theorem 3.2 in [15] in the following ways:

(1) The asymptotically quasi-nonexpansive mapping in [8], [9] and [15] is
replaced by finite family of asymptotically quasi-nonexpansive type mappings.

(2) The usual Ishikawa iteration scheme in [8], the usual modified Ishikawa
iteration scheme with errors in [9] and the usual modified Ishikawa iteration
scheme with errors for two mappings in [15] are extended to the multi-step
iteration scheme with errors for a finite family of mappings.

Remark 4. Theorem 3.2 extends and improves the corresponding result of [10]
in the following aspect:

(1) The asymptotically quasi-nonexpansive mapping in [10] is replaced by
finite family of asymptotically quasi-nonexpansive type mappings.

(2) The usual modified Ishikawa iteration scheme with errors in [10] is ex-
tended to the multi-step iteration scheme with errors for a finite family of
mappings.

Remark 5. Theorem 3.1 also extends the corresponding result of [20] to the
case of more general class of asymptotically nonexpansive mappings and multi-
step iteration scheme with errors for a finite family of mappings considered in
this paper.

Remark 6. Our results also extend the corresponding results of Chidume and
Ofoedu [3] to the case of more general class of total asymptotically nonexpansive
mappings considered in this paper.

Acknowledgement. The author thanks the referee for his valuable sugges-
tions and comments on the manuscript.
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