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ON HYBRID GROUP CELLULAR AUTOMATA

Jae-Gyeom Kim

Abstract. We investigate some conditions for hybrid cellular automata
to be group cellular automata.

1. Introduction

Cellular automata have been demonstrated by many researchers to be a
good computational model for physical systems simulation since the concept of
cellular automata first introduced by John Von Neumann in the 1950’s. And
researchers have studied on cellular automata configured with rules 51, 60, 102,
153, 195 or 204 and whether such cellular automata are group cellular automata
[1-6].

In this note, we will investigate some conditions for such cellular automata
to be group cellular automata.

2. Preliminaries

A cellular automaton (CA) is an array of sites (cells) where each site is in
any one of the permissible states. At each discrete time step (clock cycle) the
evolution of a site value depends on some rule (the combinational logic) which
is a function of the present state of its k neighbors for a k-neighborhood CA.
For 2-state 3-neighborhood CA, the evolution of the ith cell can be represented
as a function of the present states of (i − 1)th, ith, and (i + 1)th cells as:
xi(t + 1) = f{xi−1(t), xi(t), xi+1(t)}, where f represents the combinational
logic. For such CA, the modulo-2 logic is always applied.

For 2-state 3-neighborhood CA there are 23 distinct neighborhood configu-

rations and 22
3

distinct mappings from all these neighborhood configurations to
the next state, each mapping representing a CA rule. The CA, characterized by
a rule known as rule 60, specifies an evolution from neighborhood configuration
to the next state as:

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0 Decimal 60.
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The corresponding combinational logic of rule 60 is given by

xi(t + 1) = xi−1(t)⊕ xi(t),

that is, the next state of ith cell depends on the present states of its left and
self neighbors.

A CA characterized by EXOR and/or EXNOR dependence is called an ad-
ditive CA. If in a CA the neighborhood dependence is EXOR, then it is called
a noncomplemented CA and the corresponding rule is referred to as a noncom-
plemented rule. For neighborhood dependence of EXNOR (where there is an
inversion of the modulo-2 logic), the CA is called a complemented CA. The cor-
responding rule involving the EXNOR function is called a complemented rule.
In a complemented CA, single or multiple cells may employ a complemented
rule with EXNOR function. There exist 16 additive rules which are Rule 0, 15,
51, 60, 85, 90, 102, 105, 150, 153, 165, 170, 195, 204, 240 and 255.

If in a CA the same rule applies to all cells, then the CA is called a uniform
CA; otherwise the CA is called a hybrid CA. There can be various boundary
conditions; namely, null (where extreme cells are connected to logic ‘0’), peri-
odic (extreme cells are adjacent), etc. In the sequel, we will always assume null
boundary condition unless specified.

The logic functions for three complemented rules 195, 163 and 51 and the
corresponding noncomplemented rules are also noted in Table 1.

Table 1. Logic functions

complemented noncomplemented
Rule logic function dependency rule logic function

195 xi−1(t)⊕ xi(t) left & self 60 xi−1(t)⊕ xi(t)

153 xi(t)⊕ xi+1(t) self & right 102 xi(t)⊕ xi+1(t)

51 xi(t) self 204 xi(t)

The characteristic matrix T of a noncomplemented CA is the transition
matrix of the CA. The next state ft+1(x) of an additive CA is given by
ft+1(x) = T × ft(x), where ft(x) is the current state, t is the time step. If
all the states of the CA form a single or multiple cycles, then it is referred to
as a group CA. And the number of cells of a CA is called the length of a CA.

Lemma 2.1. [3] A noncomplemented CA is a group CA if and only if Tm = I
where T is the characteristic matrix of the CA, I is the identity matrix and m
is a positive integer.

Theorem 2.2. [3] A noncomplemented CA is a group CA if and only if the
determinant detT = 1 where T is the characteristic matrix for the CA.

Lemma 2.3. [3] If T
m

denote the application of the complemented rule T for
m successive cycles, then

[T
m

][f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)] + [Tm][f(x)]
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where T is the characteristic matrix of the corresponding noncomplemented
rule and [F (x)] is an `-dimensional vector (` = number of cells) responsible for
inversion after EXORing, and F (x) has ‘1’ entries (i.e., nonzero entries) for
CA cell positions where EXNOR function is employed.

Lemma 2.4. [1] State transitions in all additive CA (noncomplemented, com-
plemented, or hybrid) can be expressed by the relation noted in Lemma 2.3,
where [F (x)] contains nonzero entries for the cell positions with complemented
rule. In the case of a CA where only noncomplemented rules are applied
throughout its length, [F (x)] turns out to be a null vector.

Lemma 2.5. [6] CA rules 60, 102 and 204 form groups for all lengths ` with
group order n = 2a where a is a nonnegative integer. And if the CA rule is 60

or 102 then
n

2
< ` ≤ n.

3. Hybrid group cellular automata

We will concern with hybrid CA configured with rules 60, 102 or 204. A
hybrid CA with rule vector 〈· · · , Ri, · · ·〉 means the rule Ri applies to ith cell
for each i.

Now we will investigate whether such a hybrid CA of length ` is a group
CA. Let 〈· · · , 60, 102, · · ·〉 be the rule vector of a hybrid CA where rules 60
and 102 apply to ith and (i + 1)th cells, respectively. Then the corresponding
characteristic matrix T of the CA is given by

...

· · · 0 1 1
0

0
1 1 0 · · ·
...

 .

So detT = detA · detB, where A and B are the submatrices of T given by ...

· · · 0 1 1

 and

1 1 0 · · ·
...


of size i and `− i, respectively. And the states of the first i cells of the CA

and the states of the latter ` − i cells of the CA are completely independent
for all time steps. Thus the hybrid CA can be completely split into two CA’s.
One of them is a CA of length i with rule vector 〈· · · , 60〉 and the other one is
a CA of length ` − i with rule vector 〈102, · · ·〉. This means that whether the
hybrid CA is a group CA which is completely determined by two split CA’s,
i.e., the hybrid CA is a group CA if both of two split CA are group CA.
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Let 〈· · · , 60, 204, · · ·〉 be the rule vector of a hybrid CA where rules 60 and
204 apply to ith and (i+ 1)th cells, respectively. Then the corresponding char-
acteristic matrix T of the CA is given by


...

· · · 0 1 1
0

0
1 0 0 · · ·
...

 .

So the remaining discussion is quite similar to the case in the above. Note that
the rule vector 〈· · · , 60, 204, · · ·〉 includes the rule vectors 〈· · · , 60, 204, 60, · · ·〉,
〈· · · , 60, 204, 102 · · ·〉 and 〈· · · , 60, 204, 204 · · ·〉.

Let 〈· · · , 204, 102 · · ·〉 be the rule vector of a hybrid CA where rules 204
and 102 apply to ith and (i + 1)th cells, respectively. Then the corresponding
characteristric matrix T of the CA is


...

· · · 0 0 1
0

0
1 1 0 · · ·
...

 .

So the remaining discussion is quite similar to the first case. Note that the
rule vector 〈· · · , 204, 102 · · ·〉 includes the rule vectors 〈· · · , 60, 204, 102, · · ·〉,
〈· · · , 102, 204, 102 · · ·〉 and 〈· · · , 204, 204, 102 · · ·〉.

Let 〈· · · , 204, 204 · · ·〉 be the rule vector of a hybrid CA where rule 204
applies to ith and (i+1)th cells. Then the corresponding characteristric matrix
T of the CA is 

...

· · · 0 0 1
0

0
1 0 0 · · ·
...

 .

So the remaining discussion is quite similar to the first case. Note that the
rule vector 〈· · · , 204, 204 · · ·〉 includes the rule vectors 〈· · · , 60, 204, 204, · · ·〉,
〈· · · , 102, 204, 204 · · ·〉 and 〈· · · , 204, 204, 60 · · ·〉.

Now let 〈· · · , 102, 204, 60 · · ·〉 be the rule vector of a hybrid CA where rules
102, 204 and 60 apply to (i − 1)th, ith and (i + 1)th cells, respectively. Then
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the corresponding characteristric matrix T of the CA is given by
· · · 0 1

...

1
0

· · · 0 0 1 0 0 · · ·

0
1
...

1 0 · · ·


.

So detT = detA · detB where A and B are the submatrices of T given by
...

· · · 0 1 1

· · · 0 0 1

 and


1 0 0 · · ·
1 1 0 · · ·
...


of size i and `− i+ 1, respectively. And the states of the first i cells of the CA
are not influenced at all by the states of the remaining ` − i cells of the CA.
Similarly, the states of the latter `− i+ 1 cells of the CA are not influenced at
all by the states of the remaining i − 1 cells of the CA. Thus the hybrid CA
can be completely split into two CA. One of them is a CA of length i with rule
vector 〈· · · , 102, 204〉 and the other one is a CA of length ` − i + 1 with rule
vector 〈204, 60, · · ·〉. And their corresponding characteristic matrices are A and
B in the above, respectively.

Note that rule vectors 〈· · · , 102, 204〉 and 〈204, 60 · · ·〉 can be regarded as
rule vectors 〈· · · , 102, 102〉 and 〈60, 60 · · ·〉 respectively, because we assume null
boundary condition.

Finally, let 〈· · · , 102, 60, · · ·〉 be the rule vector of a hybrid CA where rules
102 and 60 apply to ith and (i+1)th cells, respectively. Then the corresponding
characteristric matrix T of the CA is given by

. . .

a 1 b

0 · · · 0 0 1 1 0 0 · · · 0

0 · · · 0 0 1 1 0 0 · · · 0

c 1 d
. . .


.

So detT = 0 because ith and (i + 1)th rows of T are same. Thus the hybrid
CA is not a group CA by Theorem 2.2.

From the discussion in the above, we have the following by Lemma 2.5.

Theorem 3.1. Let H be a hybrid CA configured with rules 60, 102 or 204.
If rule 60 just follows rule 102 in the rule vector of H, then H is not a group
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CA. Otherwise, H is a group CA and can be regarded as a combination of
independent uniform group CA’s.

Now we will concern with additive hybrid CA configured with rules 51, 60,
102, 153, 195 or 204. Let R = 〈· · · , Ri, · · ·〉 be the rule vector of a CA of length
` configured with noncomplemented rules 60, 102 or 204. Let [F (x)] be a vector
of length ` with entries 0 or 1. Then R[F (x)] will denote the rule vector of the

hybrid CA of length ` where ith rule of R[F (x)] is the complemented rule Ri of

ith rule Ri of R if ith entry of [F (x)] is 1, otherwise ith rule of R[F (x)] is ith rule
Ri of R.

Theorem 3.2. Let H be an additive hybrid CA of length ` configured with
rules 51, 60, 102, 153, 195 or 204. Suppose that rule 60 does not just follow
rule 102 and that rule 195 does not just follow rule 153 in the rule vector of H.
Then H is a group CA.

Proof. Let R = 〈· · · , Ri, · · ·〉 be the rule vector of a noncomplemented CA of
length ` and [F (x)] the vector of length ` with entries 0 or 1 so that R[F (x)]

is the rule vector of H. And let T̃ denote the application of the rule vector
R[F (x)] where T is the characteristic matirx corresponding to the rule vector
R. Then we have

[T̃
m

][f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)] + [Tm][f(x)]

for all f(x) by Lemma 2.4, where T̃
m

denotes the application of the rule vector
R[F (x)] for m successive cycles. And rule 60 does not just follow rule 102 in
the rule vector R by the assumption. So the noncomplemented CA with rule
vector R is a group CA by Theorem 3.1, and thus there exist a positive integer
r such that T r = I by Lemma 2.1. Therefore we have

[T̃
2r

][f(x)] = [I + T + T 2 + · · ·+ T 2r−1][F (x)] + [T 2r][f(x)]

= [(I + T + · · ·+ T r−1) + (T r + · · ·+ T 2r−1)][F (x)] + [I][f(x)]

= [(I + T + · · ·+ T r−1) + (I + T + · · ·+ T r−1)][F (x)] + [f(x)]

= [0][F (x)] + [f(x)] (since modulo-2 summation is involved)

= [f(x)]

for all f(x). This means that T̃
2r

= I. Hence the additive hybrid CA with rule
vector R[F (x)] is a group CA. This completes the proof. �
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