DOI QR코드

DOI QR Code

Correlations of Phase Velocities of Guided Ultrasonic Waves with Cortical Thickness in Bovine Tibia

소의 경골에서 유도초음파의 위상속도와 피질골 두께 사이의 상관관계

  • Received : 2010.10.25
  • Accepted : 2010.12.26
  • Published : 2011.01.31

Abstract

In the present study, the phase velocities of guided ultrasonic waves such as the first arriving signal (FAS) and the slow guided wave (SGW) propagating along the long axis on the 12 tubular cortical bone samples in vitro were measured and their correlations with the cortical thickness were investigated. The phase velocities of the FAS and the SGW were measured by using the axial transmission method in air with a pair of unfocused ultrasonic transducers with a diameter of 12.7 mm and a center frequency of 200 kHz. The phase velocity of the FAS measured at 200 kHz exhibited a very high negative correlation with the cortical thickness and that of the SGW arriving after the FAS showed a high positive correlation with the cortical thickness. The simple and multiple linear regression models with the phase velocities of the FAS and the SGW as independent variables and the cortical thickness as a dependent variable revealed that the coefficient of determination of the multiple linear regression model was higher than those of the simple linear regression models. The phase velocities of the FAS and the SGW measured at 200 kHz on the 12 tubular cortical bone samples were, respectively, consistent with those of the S0 and the A0 Lamb modes calculated at 200 kHz on the cortical bone plate.

본 연구에서는 생체 외 조건에서 12개의 관형 피질골 샘플에 대하여 피질골 샘플의 축방향을 따라 전파하는 first arriving signal (FAS) 및 slow guided wave (SGW)와 같은 유도초음파의 위상속도를 측정하고, 각각의 위상속도와 피질골 두께 사이의 상관관계를 고찰하였다. FAS 및 SGW의 위상속도는 12.7 mm의 직경 및 200 kHz의 중심 주파수를 갖는 한 쌍의 비집속형 초음파 변환기와 함께 공기중에서 축방향 전파법을 이용하여 측정되었다. 200 kHz에서 측정된 FAS의 위상속도는 피질골 두께와 매우 높은 음의 상관관계를 나타냈으며, FAS 이후에 수신되는 SGW의 위상속도는 피질골 두께와 높은 양의 상관관계를 나타냈다. FAS 및 SGW의 위상속도를 독립변수로 하고, 피질골 두께를 종속변수로 하는 단순 및 다중선형회귀모델의 결과로부터 다중선형회귀모델의 결정계수가 단순선형회귀모델의 결정계수보다 높게 나타났다. 또한 12개의 관형 피질골 샘플에 대하여 200 kHz에서 측정된 FAS 및 SGW의 위상속도는 각각 판형 피질골에 대하여 200 kHz에서 계산된 S0 및 A0 램 모드의 위상속도와 잘 일치하였다.

Keywords

References

  1. C. F. Njeh, D. Hans, T. Fuerst, C. C. Gluer, and H. K. Genant, Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status, Martin Dunitz, London, 1999
  2. P. Laugier, "Instrumentation for in vivo ultrasonic characterization of bone strength," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 6, pp. 1179-1196, 2008. https://doi.org/10.1109/TUFFC.2008.782
  3. R. Barkmann, P. Laugier, U. Moser, S. Dencks, M. Klausner, F. Padilla, G. Haiat, and C. C. Gluer, "A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 6, pp. 1197-1204, 2008. https://doi.org/10.1109/TUFFC.2008.783
  4. P. Moilanen, "Ultrasonic guided waves in bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 6, pp. 1277-1286, 2008. https://doi.org/10.1109/TUFFC.2008.790
  5. I. M. Siegel, G. T. Anast, and T. Fields, "The determination of fracture healing by measurement of sound velocity across the fracture site," Surg. Gynecol. Obstet., vol. 107, no. 3, pp. 327-332, 1958.
  6. P. H. F. Nicholson, P. Moilanen, T. Karkkainen, J. Timonen, and S. Cheng, "Guided ultrasonic waves in long bones: modelling, experiment and in vivo application," Physiol. Meas., vol. 23, no. 4, pp. 755-768, 2002. https://doi.org/10.1088/0967-3334/23/4/313
  7. K. I. Lee and S. W. Yoon, "Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia," J. Acoust. Soc. Am., vol. 115, no. 6, pp. 3210-3217, 2004. https://doi.org/10.1121/1.1707086
  8. S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, "Ultrasonic propagation in cortical bone mimics," Phys. Med. Biol., vol. 51, no. 18, pp. 4635-4647, 2006. https://doi.org/10.1088/0031-9155/51/18/012
  9. M. Sasso, M. Talmant, G. Haiat, S. Naili, and P. Laugier, "Analysis of the most energetic late arrival in axially transmitted signals in Cortical Bone, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 11, pp. 2463-2470, 2009. https://doi.org/10.1109/TUFFC.2009.1333
  10. H. Lamb, "On waves in an elastic plate," Proc. R. Soc. Lond. A, vol. 93, no. 648, pp. 114-128, 1917. https://doi.org/10.1098/rspa.1917.0008
  11. P. Moilanen, V. Kilappa, P. H. F. Nicholson, J. Timonen, and S. Cheng, "Thickness sensitivity of ultrasound velocity in long bone phantoms," Ultrasound Med. Biol., vol. 30, no. 11, pp. 1517-1521, 2004. https://doi.org/10.1016/j.ultrasmedbio.2004.08.017
  12. E. Bossy, M. Talmant, F. Peyrin, L. Akrout, P. Cloetens, and P. Laugier, "An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity," J. Bone Miner. Res., vol. 19, no. 9, pp. 1548-1556, 2004. https://doi.org/10.1359/JBMR.040513
  13. P. Moilanen, P. H. F. Nicholson, T. Karkkainen, Q. Wang, J. Timonen, and S. Cheng, "Assessment of the tibia using ultrasonic guided waves in pubertal girls," Osteoporosis Int., vol. 14, no. 12, pp. 1020-1027, 2003. https://doi.org/10.1007/s00198-003-1528-7
  14. M. Muller, P. Moilanen, E. Bossy, P. Nicholson, V. Kilappa, J. Timonen, M. Talmant, S. Cheng, and P. Laugier, "Comparison of three ultrasonic axial transmission methods for bone assessment," Ultrasound Med. Biol., vol. 31, no. 5, pp. 633-642, 2005. https://doi.org/10.1016/j.ultrasmedbio.2005.02.001
  15. D. Alleyne and P. Cawley, "A two-dimensional Fourier transform method for the measurement of propagating multimode signals," J. Acoust. Soc. Am., vol. 89, no. 3, pp. 1159-1168, 1991. https://doi.org/10.1121/1.400530