DOI QR코드

DOI QR Code

모바일 초음파 영상신호의 빔포밍 기법을 위한 최적의 매니코어 프로세서 구현

Implementation of an Optimal Many-core Processor for Beamforming Algorithm of Mobile Ultrasound Image Signals

  • 최병국 (울산대학교 전기공학부) ;
  • 김종면 (울산대학교 전기공학부)
  • 투고 : 2011.03.21
  • 심사 : 2011.04.16
  • 발행 : 2011.08.31

초록

본 논문에서는 모바일 초음파(mobile ultrasound) 영상신호의 빔포밍 알고리즘에서 요구되는 고성능 및 저전력을 만족시키는 매니코어 프로세서에 대한 디자인 공간 탐색 방법을 소개한다. 매니코어 프로세서의 디자인 공간 탐색을 위해 매니코어의 각 프로세싱 엘리먼트(Processing Element, PE)당 초음파 영상신호 데이터의 수를 변화시키는 실험을 통해 실행시간, 에너지 효율 및 시스템 면적 효율을 측정하고, 측정된 결과를 바탕으로 최적의 매니코어 프로세서 구조를 선택하였다. 모의실험 결과, PE 개수가 4096일 때 에너지 효율이 가장 높았으며, PE 개수가 1024일 때 가장 높은 시스템 면적 효율을 보였다. 또한, PE 개수가 4096인 매니코어 아키텍처는 초음파 영상장치에 가장 많이 사용되는 TI DSP C6416보다 각각 에너지 효율에서 46배, 시스템 면적 효율에서 10배의 향상을 보였다.

This paper introduces design space exploration of many-core processors that meet high performance and low power required by the beamforming algorithm of image signals of mobile ultrasound. For the design space exploration of the many-core processor, we mapped different number of ultrasound image data to each processing element of many-core, and then determined an optimal many-core processor architecture in terms of execution time, energy efficiency and area efficiency. Experimental results indicate that PE=4096 and 1024 provide the highest energy efficiency and area efficiency, respectively. In addition, PE=4096 achieves 46x and 10x better than TI DSP C6416, which is widely used for ultrasound image devices, in terms of energy efficiency and area efficiency, respectively.

키워드

참고문헌

  1. Seong-Ho Jang, "Ultrasound image diagnosis devices", Journal of the Korean Institute of Electrical Engineers, vol. 48, no. 8, pp. 11-21, Aug. 1998.
  2. Sungha Kim, Wonseok Lee, Eunhee Shin, Byungkuk Bae, Yongrae Roh, "Design and fabrication of a 64 channel ultrasonic phased array transducer", in the Acoustical Society of Korea Conference, vol. 29, no. 2, pp. 608-609, 2010.
  3. Sun-Heum Lee, Kwan-Sun Choi, Dong-Sik Kim, "New performance evaluation method of focused ultrasonic transducers by using virtual 3D graphic", Journal of the Korea Information Processing Society, vol. 14, no. 6, pp. 407-412, Oct. 2007. https://doi.org/10.3745/KIPSTB.2007.14-B.6.407
  4. Hoo-Jeong Lee, Haing-Sei Lee, Young-Kil Kim, Min-Hwa Lee, "A study of the improvement a lateral resolution of the ultrasound imaging system", Journal of KOSOMBE, vol. 9, no. 1, pp. 87-92, 1998.
  5. T. R. Gururaja, and R. K. Panda, "Current status and future trends in ultrasonic transducers for medical imaging applications," in Proc. of the 11th IEEE International Symposium on Application of Ferroelectrics, pp. 223-228, 1998.
  6. X.-G. Jiang, J.-Y. Zhou, J.-H. Shi, H.-H. Chen "FPGA implementation of image rotation using modified compensated CORDIC," in Proc. of the 6th International Conference on ASIC, vol. 2, pp. 752-756, 2005.
  7. E. B. Bourennane, S. Bouchoux, J. Miteran, M. Paindavoine, S. Bouillant, "Cost comparison of image rotation implementations on static and dynamic reconfigurable FPGAs," in Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '02), vol. 3, pp. III-3176-3179, 2002.
  8. S.-H. Lee, "The Design and implementation of para llel processing system using the Nios(R) II embedded processor," Journal of the Korea Society of Computer and Information, Vol. 14, No. 11, pp. 97-103, Nov. 2009.
  9. A. D. Blas et. al, "The UCSC Kestrel Parallel Pro cessor," IEEE Trans. on Parallel and Distributed Systems, vol. 16, no. 1, pp. 80-92, Jan. 2005. https://doi.org/10.1109/TPDS.2005.12
  10. A. Gentile and D. S. Wills, "Portable video super computing," IEEE Trans. on Computers, vol. 53, no. 8, pp. 960-973, Aug. 2004. https://doi.org/10.1109/TC.2004.48
  11. L. V. Huynh, C.-H. Kim, J.-M. Kim, "Amassively parallel algorithm for fuzzy vector quantization," Journal of Korea Information Processing Society, Vol. 16-A, No. 6, pp. 411-418, Dec. 2009
  12. J. F. Havlice and J. C. Taenzer, "Medical ultras onic imaging: An overview of principles and instrumentation," Proceedings of IEEE, vol. 67, no. 4, pp. 620-640, April 1979 https://doi.org/10.1109/PROC.1979.11287
  13. M. E. Schafer and P. A. Lewin, "The influence of front-end hardware on digital ultrasonic imaging," IEEE Trans. Sonics Ultrasonics, vol. SU-31, no. 4, pp. 295-306, July 1984.
  14. H. Kim, T. K. Song, and S. B. Park, "Apipelined sampled delay focusing in ultrasound imaging systems," Ultrasonic Imaging, vol. 9, pp. 75-91, 1987 https://doi.org/10.1177/016173468700900201
  15. S. M. Chai, T. Taha, D. S. Wills, and J. D. Meindl, "Heterogeneous architecture models for intercon nect-motivated system design," IEEE Trans. on VLSI Systems, vol. 8, no. 6, pp. 660-670, 2000. https://doi.org/10.1109/92.902260
  16. V. Tiwari, S. Malik, and A. Wolfe, "Compilation tec hniques for lowenergy: An overview," in Proc. IEEE International Symposium on Low Power Electronics, pp. 38-39, 1994.
  17. A. Gentile, S. Sander, L. Wills, and D. S. Wills, "The Impact of Grain Size of the Efficiency of Embedded SIMD Image Processing Architectures," Journal of Parallel Distributed Computing, Vol. 64, pp. 1318-1327, Nov. 2004. https://doi.org/10.1016/j.jpdc.2004.06.013
  18. TMS320C64x families, http://www.bdti.com/procsum/tic64xx.htm.
  19. ARM 926EJ-S data sheet,http://www.arm.com/products/ processors/classic/arm9/arm926.php
  20. ARM 1020E data sheet,http://www.hotchips.org /archive s/hc13/2_Mon/02arm.pdf