A New Test Method to Evaluate Influence of $Al_2O_3$ to Rubber Insulator in Solid Propellant Rocket Motor

고체추진기관의 $Al_2O_3$가 고무내열재에 미치는 영향을 평가하는 시험방법 연구

  • 이형식 (국방과학연구소 1기술연구본부 6부) ;
  • 강윤구 (국방과학연구소 1기술연구본부 6부) ;
  • 임수용 (국방과학연구소 1기술연구본부 6부) ;
  • 오종윤 (국방과학연구소 1기술연구본부 6부) ;
  • 이경훈 (국방과학연구소 1기술연구본부 6부)
  • Received : 2010.12.06
  • Accepted : 2011.04.19
  • Published : 2011.06.30

Abstract

In solid propellant rocket motors, $Al_2O_3$, one of combustion products, can be accumulated inside a combustion chamber. A special rocket motor was designed and tested to simulate thermal reaction of rubber insulator affected by the deposited slag. We successfully demonstrated through a dynamic radioscopy that the slag was deposited at the location as designed. In this paper we present a new test method which can simulate a high temperature and pressure environment in combustion chamber to evaluate material characteristics of rubber insulator and can provide design data to decide its thickness for a new solid rocket motor. The solid rocket motor, which has an average chamber pressure of 770 psia and a burning time of 50 seconds, was tested. The results show that erosion of EPDM insulator is more affected by a gas velocity rather than by the thermal reaction of slag with a high thermal capacity.

고체추진기관의 연소 생성물 중 $Al_2O_3$는 노즐목으로 빠져나가지 않고 연소관내부에 침적될 수 있다. 침적된 슬래그에 의한 고무내열재의 열반응을 모사하기위하여 특별한 추진기관을 설계하여 시험하였다. 이 특별한 추진기관 시험 중 슬래그 침적양상을 Dynamic Radioscopy로 촬영함으로서 처음 설계한데로 원하는 위치에 슬래그가 침적된다는 것을 입증하였다. 본 논문에서 개발한 시험방법은 새롭게 설계하려는 추진기관내부의 온도와 압력을 그대로 모사할 수 있어 슬래그에 의한 고무내열재의 재료 특성평가 및 연소관의 내열고무두께를 결정하는 설계자료로 사용할 수 있는 모사시험 방법이다. 연소평균압력 770 psi이고 연소시간 50초인 추진기관을 시험하였다. 시험 결과로부터 EPDM 내열재의 삭마는 열량이 큰 슬래그에 의한 고무 열반응보다는 연소가스 유속에 의하여 더 크게 영향 받는 것을 알 수 있었다.

Keywords

References

  1. J. C. Melcher, R. L. Burton, and H. Krier, "Combustion of Aluminum Particles in Solid Rocket Motor Flows," AIAA 99-2630, 1999
  2. William A. Dick and Michael T. Heath, "WHOLE SYSTEM SIMULATION OF SOLID PROPELLANT ROCKETS," AIAA 2002-4345, 2002
  3. Y. Fabignon, O.Orlandi, J. F. Trubert, D. Lambert, and J. Dupays, "Combustion of Aluminum Particles in Solid Rocket Motors," AIAA 2003-4807, 2003
  4. Vishal Srinivas and S. R. Chakravarthy, "Computer Model of Aluminum Agglomeration on the Burning Surface of a Composite Solid Propellant," AIAA 2005- 743, 2005
  5. F.M. Najjar, L. Massa, R. Fiedler, A. Haselbacher, B. Wasistho, S. Balachandar, "Effects of Aluminum Propellant Loading and Size Distribution in BATES Motors: A Multiphysics Computational Analysis," AIAA 2005-3997, 2005
  6. H. Wirzberger, Y. Macales and S. Yaniv, "Prediction of Slag Formation in a Solid Rocket Motor," AIAA 2005-4488, 2005
  7. T. L. Jackson, F. Najjar, and J. Buckmaster, "New Aluminum Agglomeration Models and Their Use in Solid-Propellant-Rocket Simulations," JOURNAL OF PROPULSION AND POWER, Vol. 21, No. 5, September- October 2005, pp.925-936 https://doi.org/10.2514/1.11888
  8. F. M. Najjar, J. P. Ferry, A. Haselbacher, and S. Balachandar, "Simulations of Solid-Propellant Rockets: Effects of Aluminum Droplet Size Distribution," JOURNAL OF SPACECRAFT AND ROCKETS, Vol. 43, No. 6, November- December 2006, pp.1258-1270 https://doi.org/10.2514/1.17326
  9. Jay K. Sambamurthi, "Al2O3 Collection and Sizing from Solid Rocket Motor Plumes," JOURNAL OF PROPULSION AND POWER Vol. 12, No. 3, May-June 1996, pp.598-604 https://doi.org/10.2514/3.24075
  10. Joseph H. Koo, Dave W.H. Ho, and Ofodike A. Ezekoye, "A Review of Numerical and Experimental Characterization of Thermal Protection Materials-Part I. Numerical Modeling," AIAA 2006-4936, 2006