DOI QR코드

DOI QR Code

Development of a Theoretical Wheelset Model to Predict Wheel-climbing Derailment Behaviors Caused by Rolling Stock Collision

철도차량 충돌에 의한 타고오름 탈선거동 예측을 위한 단일윤축 이론모델 개발

  • 최세영 (서울과학기술대학교 철도전문대학원) ;
  • 구정서 (서울과학기술대학교 철도전문대학원) ;
  • 유원희 (한국철도기술연구원 주행추진연구실)
  • Received : 2011.02.14
  • Accepted : 2011.04.05
  • Published : 2011.06.26

Abstract

This study formulates the theoretical wheel-set model to evaluate wheel-climbing derailments of rolling stock due to collision, and verifies this theory with dynamic simulations. The impact forces occurring during collision are transmitted from a car body to axles through suspensions. As a result of combinations of horizontal and vertical forces applied to axles, rolling stock may lead to derailment. The derailment type will depend on the combinations of the horizontal and vertical forces, flange angle and friction coefficient. According to collision conditions, the wheel-lift, wheel-climbing or roll-over derailments can occur between wheel and rail. In this theoretical derailment model of wheelset, the wheel-climbing derailment types are classified into Climb-over, Climb/roll-over, and pure Roll-over according to derailment mechanism between wheel and rail, and we proposed the theoretical conditions to generate each derailment mechanism. The theoretical wheel-set model was verified by dynamic simulations.

본 논문에서는 열차 충돌로 발생되는 충격으로 차축에 큰 수직하중 및 수평하중이 부과될 때 플랜지가 레일을 타고 오르는 탈선현상을 예측할 수 있는 단일 윤축의 이론적 탈선 모델을 연구하였다. 철도차량 충돌 시 크게 타고오름(wheel-climbing), 들려오름(lift-up), 전복(roll-over) 등과 이들의 복합유형탈선이 발생할 수 있다. 타고오름 및 복합 유형의 탈선은 세 가지(Climb-over, Climb/roll-over, Roll-over)로 정의할 수 있다. 본 논문에서는 충돌 후 탈선거동을 예측하기 위하여 타고오름 및 복합 유형 탈선에 대한 단일윤축 이론모델을 제안하고, 정의한 세 가지 탈선거동이 발생하기 위한 조건을 제시하였다. 타고오름 및 복합 유형의 탈선거동을 예측하기 위하여 제안된 단일윤축 이론모델의 타당성을 단순플랜지 형상 윤축모델을 사용한 동역학 시뮬레이션을 통하여 검증하고, 타당성을 보인다.

Keywords

References

  1. Ministry of Land, Transport and Maritime Affairs, Rolling Stock Safety Regulation, Notification No. 2007-278 of the MLTM, 2007.
  2. AEIF/TSI, Technical Specification for Interoperability Relating to the Rolling Stock Subsystem of the Trans-European High-speed Rail System, 2008.
  3. AFNOR, The European Standard EN 15227: Railway Applications- Crashworthiness requirement for Railway Vehicle Bodies, March 27, 2008.
  4. S.R. Kim, T.S. Kwon, J.S. Koo (2008) "Crashworthiness Evaluation of the Korean High Speed Train Using a Virtual Testing Model", International Journal of Modern Physics B, Vol. 22, pp. 1383-1390. https://doi.org/10.1142/S0217979208046815
  5. S.R. Kim, J.S. Koo (2008) "A Study on Strain Rate Effects in Collision Analysis of Rolling Stock", International Journal of Modern Physics B, Vol. 22, pp. 1423-1430. https://doi.org/10.1142/S0217979208046876
  6. G.Y. Kim, H.J. Cho, J.S. Koo, T.S. Kwon (2008) "A Derivation of the Standard Design Guideline for Crashworthiness of High Speed Train with Power Cars", KSAE, 16(6), pp. 157-167.
  7. G.Y. Kim, H.J. Cho, J.S. Koo (2008) "A Study on Conceptual Design for Crashworthiness of the Next Generation Highspeed EMU", Journal of the Korean Society for Railway, 11(3), pp. 300-310.
  8. D.C. Tyrell, K.J. Sevrson, B.J. Marquis (1995) "Train Crashworthi- ness Design for Occupant Survivability", ASME International Mechanical Engineering Congress and Exposition", AMD-Vol. 210, pp. 59-74.
  9. D.C. Tyrell, K.J. Sevrson, B.J. Marquis (1995) "Analysis of Occupant Protection Strategies in Train Collisions", ASME International Mechanical Engineering Congress and Exposition", AMD-Vol. 210, pp. 539-557.
  10. A.M. Elmarakbi, J.W. Zu (2006) Crash Analysis and Modeling of Two Vehicles in Frontal Collisions Using Two Types of Smart Front-end Structures: an Analytical Approach Using IHBM, International Journal of Crashworthiness, 11(5), pp. 467-483. https://doi.org/10.1533/ijcr.2005.0117
  11. A.A. Shabana, K.E. Zaazaa, J.L. Escalona, J.R. Sany (2004) "Development of Elastic Force Model for Wheel/Rail Contact Problems", Journal of Sound and Vibration, Vol. 269, pp. 295-325. https://doi.org/10.1016/S0022-460X(03)00074-9
  12. C.R Paetsch, A.B. Perlman, D.Y. Jeong (2006) Dynamic Simulation of Train Derailments, Proceeding of IMECE 2006-14607, pp. 105-114.
  13. H.J. Cho (2009) Study on Wheel-rail Models for Prediction of Derailment Behavior after Collision Using Virtual Testing Model, A Doctoral Thesis, Seoul National University of Technology, Korea.
  14. Functionbay, Recurdyn, www.functionbay.com

Cited by

  1. Evaluation of Curving Performance and Running Safety of New High-Power Electric Locomotive vol.37, pp.6, 2013, https://doi.org/10.3795/KSME-A.2013.37.6.827
  2. Collision-induced Derailment Analysis of a Finite Element Model of Rolling Stock Applying Rolling Contacts for Wheel-rail Interaction vol.21, pp.3, 2013, https://doi.org/10.7467/KSAE.2013.21.3.001