DOI QR코드

DOI QR Code

Finite Element Analysis of Concrete Railway Sleeper Damaged by Freezing Force of Water Penetrated into the Inserts

고속철도 콘크리트 궤도 매립전 내 침투수의 결빙압에 의한 균열손상해석

  • 문도영 (경성대학교 토목공학과) ;
  • 지광습 (고려대학교 건축사회환경공학부) ;
  • 김진균 (고려대학교 건축사회환경공학과) ;
  • 장승엽 (한국철도기술연구원 미래전략연구센터)
  • Received : 2010.11.22
  • Accepted : 2011.03.28
  • Published : 2011.06.26

Abstract

Finite element analysis was undertaken to investigate the effect of freezing force of water unexpectedly penetrated into inserts used in railway sleeper on pullout capacity of anchor bolts for fixing base-plate onto concrete sleeper. Based on the in-situ investigation and measurement of geometry of railway sleeper and rail-fastener, the railway sleeper was modeled by 3D solid elements. Nonlinear and fracture properties for the finite element model were assumed according to CEB-FIP 1990 model code. And the pullout maximum load of anchor bolt obtained from the model developed was compared with experimental pullout maximum load presented by KRRI for verification of the model. Using this model, the effect of position of anchor bolt, amount of fastening force applied to the anchor bolt, and compressive strength of concrete on pull-out capacity of anchor bolts installed in railway sleeper was investigated. As a result, it is found that concrete railway sleepers could be damaged by the pressure due to freezing of water penetrated into inserts. And the pullout capacity of anchor bolt close to center of railway is slightly greater than that of the others.

본 연구에서는 콘크리트 궤도 침목 내에 설치되는 인서트에 예기치 못하게 침투된 수분의 결빙압이 앵커볼트의 인발강도에 미치는 영향을 유한요소해석을 통해 고찰하였다. 3차원 유한요소해석모델은 콘크리트 침목의 현장실험 결과, 도면 및 레일체결장치의 제원 실측치를 기반으로 수립되었으며, 비선형구성방정식과 파괴 모델은 측정된 압축강도로부터 CEB-FIP 1990 모델코드를 이용하여 추정하였다. 해석모델의 적정성은 철도기술연구원에서 수행한 현장 인발시험 결과 및 실내시험 결과와의 비교를 통해 확인하였다. 다양한 인자, 즉 결빙위치, 앵커볼트 초기 체결력의 크기 및 콘크리트 압축강도에 따른 해석을 수행하였으며, 그 결과를 제시하였다. 해석결과에 의하면, 매립전내 침투수의 결빙력은 균열손상의 가장 가능성 있는 직접적인 원인 중 하나로 간주될 수 있음을 확인하였다. 또한, 외측매립전의 결빙력이 내측 매립전 보다 작은 것으로 나타났으나 그 차이는 크지 않았다.

Keywords

References

  1. J.-H. Rho, Y.-C. Ku, S.-H. Yun, H.-I. Park, H.-B. Kwon, D.-H. Lee (2009) Ballast flying probability analysis for ballast types and underbody flow conditions, Journal of the Korean Society for Railway, 12(6), pp. 829-834.
  2. T. Takahashi, E. Sekine, T. Horike, S. Matsuoka, H. Hoshiro (2008) Study on the applicability of short fiber reinforced concrete to precast concrete slabs for slab track, Quarterly Report of RTRI, 49(1), pp. 40-46. https://doi.org/10.2219/rtriqr.49.40
  3. Korean Society of Civil Engineers (2009) Investigation of crack damages on railway sleepers constructed in the KTX railway connect to Daegu-Busan, Korean Society of Civil Engineers.
  4. A.L. Vidovskii. (1972) Experimental determination of pressure during ice expansion, Gidrotelchnicheskoe stroitel'stvo, 8, pp. 40-47.
  5. Korean agency for technology and standards (2004) High strength bolt for steel structures, RS D 0030.
  6. ABAQUS (2005) ABAQUS Analysis User's Manual.
  7. CEB-FIP (1991) CEB-FIP 1990 Model Code, Thomas Telford, London, pp. 33-81.
  8. G. Zi, Z.P. Bazant (2003) Decontamination of radionuclides from concrete by microwave heating. II: Computations, Journal of Engineering Mechanics ASCE, 129(7), pp. 785-792. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:7(785)
  9. Z.P. Bazant, J. Planas (1998) Fracture and Size Effect: in Concrete and Other Quasibrittle Materials, CRC Press, New York.
  10. A. Hillerborg, M. Modeer, P.E. Petersson (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Concrete and Cement Research, 6, pp. 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  11. G. Zi, T. Belytschko (2003) New crack-tip elements for XFEM and applications to cohesive cracks, International Journal for Numerical Methods in Engineering, 57(15), pp. 2221-2240. https://doi.org/10.1002/nme.849
  12. G. Zi, J.-K. Jung, B. M. Kim (2006) A meshless method using the local partition of unity for modeling of cohesive cracks, Journal of KSCE, 26(5A), pp. 861-872.
  13. G. Zi, J.H. Song, E. Budyn, S.H. Lee, T. Belytschko (2004) A method for growing multiple cracks without remeshing and its application to fatigue crack growth, Modelling and Simulation in Materials Science and Engineering, 12(5), pp. 901-915. https://doi.org/10.1088/0965-0393/12/5/009
  14. G. Zi, J.-H. Song, S.-H. Lee (2005) A new method for growing multiple cracks without remeshing and its application to fatigue crack growth, Journal of KSCE, 25(1A), pp. 183-190.
  15. G. Zi, H. Chen, J. Xu, T. Belytschko (2005) The extended finite element method for dynamic fractures, Shock and Vibration, 12(1), pp. 9-23. https://doi.org/10.1155/2005/729090
  16. G. Zi, S. Yu, T. Chau-Dinh, S. Mun (2010) Analysis of static crack growth in asphalt concrete using the extended finite element method, Journal of KSCE, 30(4D), pp. 387-393.
  17. G. Zi, T. Rabczuk, W. Wall (2007) "Extended meshfree methods without branch enrichment for cohesive cracks." Computational Mechanics, 40(2), 367-382. https://doi.org/10.1007/s00466-006-0115-0
  18. T. Rabczuk, G. Zi, S. Bordas, H. Nguyen-Xuan (2008) A geometrically nonlinear three dimensional cohesive crack method for reinforced concrete structures, Engineering Fracture Mechanics, 75, pp. 4740-4758. https://doi.org/10.1016/j.engfracmech.2008.06.019