DOI QR코드

DOI QR Code

Two Dimensional Numerical Study in Gangway of Next Generation High Speed Train For Reduction of Aero-acoustic Noise

차세대 고속전철 차량연결부의 저소음 형상설계를 위한 차량연결부의 2차원적 수치해석 연구

  • Received : 2011.04.11
  • Accepted : 2011.05.20
  • Published : 2011.08.26

Abstract

As the preceding research for the design of gangway in the next generation high speed train, the aero-acoustic noise at the gangway is calculated. For this purpose, the shape of gangway with mud flaps is assumed as the two-dimensional cavity. Then, 5 gap sizes between mud flaps of gangway are selected and parametric study is performed according to the gap sizes. From this study, the aerodynamic features such as vortex shedding, pressure, etc. are computed. Also, the aero-acoustic properties of tonal noise and overall noise are analyzed at the 3 locations of microphone and the relation between the gap size of mud flap and the noise level is assessed. Through this study, it is shown that the noise characteristics of base and specific models are better than those of other models.

본 연구에서는 차세대 고속전철의 차량 연결부 저소음 형상 설계를 위한 선행연구로서 차량연결부의 공기역학적 소음 해석을 수행하였다. 이를 위해 차량 연결부는 Mud Flap 형상을 고려한 2차원 Cavity로 가정하였으며, Mud Flap 사이의 간극을 주요 변수로 하여 5개의 간극에 대하여 Parametric Study를 수행하였다. 이를 토대로 차량 Mud Flap 사이의 간극에 따른 Vortex Shedding 등의 유동 특성에 대한 해석을 수행하였다. 또한 높이 별로 3개의 Microphone 위치를 선정하고 간극에 따른 Tonal Noise 및 Overall Noise 등의 공기역학적 소음 특성을 분석하였으며, 차량 연결부 Mud Flap 간 간극 및 소음 특성 간의 상관 관계를 평가하였다. 그 결과 기본 및 특정한 Mud flap 간 간극에서의 소음 특성이 다른 형상에 비해 우수함을 확인하였다.

Keywords

References

  1. A.R. George, J.R. Callister (1991) Aerodynamic Noise of Ground Vehicles, SAE General Aviation Meeting, Wichita, Ks, Paper No. 971921, pp. 417-425.
  2. H. Kook, L. Mongeau (2002) Analysis of the Periodic Pressure Fluctuations Induced by Flow Over a Cavity, Journal of Sound and Vibration, 251(5), pp. 823-846. https://doi.org/10.1006/jsvi.2001.4013
  3. G.S. Strumolo (1997) The Wind Noise Modeler, Proceeding of the 1997 SAE Noise & Vibration Conference, Traverse City, MI, Paper No. 971921, pp. 417-425.
  4. H. Kwon, D. Lee, M. Kim (2000) Numerical Simulation of the Unsteady Flow Field Induced by a High-speed Train Passing through a Tunnel, Journal of the Korean Society for Railway, 3(4), pp. 229-236.
  5. S. Nam (2004) A Study on the Characteristics of Internal and External Pressure Variation for KTX, Journal of the Korean Society for Railway, 7(1), pp. 111-116.
  6. J. Rho, M. Kwak, H. Kang, J. Jeong, S. Jeong, D. Lee (2007) Robust Design Optimization of the Pantograph Panhead Shape on High Speed Train, The Korean Society of Mechanical Engineers, BoKwang, Kangwon-Do, pp. 1-4.
  7. H. Kwon, Y. Cho, K. Lee, K. Kim (2009) A Real-Scale Wind Tunnel Testing on a Pantograph for High-speed Train to Assess the Aerodynamic Characteristics, Journal of the Korean Society for Railway, 12(5), pp. 732-737.
  8. J. Hwang, M. Lee, D. Lee, C. Kim (2000) Exper-imental, Numerical Study on Flowfield around a High Speed Train, The Korean Society for Aeronautical and Space Sciences, 28(7), pp. 32-39.
  9. M. Inagaki, O. Murata, T. Kondoh (2002) Numerical Prediction of Fluid-Resonant Oscillation at Low Mach Number, AIAA Journal, 40(9), pp. 1823-1829. https://doi.org/10.2514/2.1859
  10. J. Smagorinsky (1963) General Circulation Experiments with the Primitive Equations. I. The Basic Experiment., Monthly Weather Review, 91, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  11. D.K. Lilly (1992) A Proposed Modification of the Germano Subgrid-Scale Closure Model, Physics of Fluids, 4, pp. 633-635. https://doi.org/10.1063/1.858280

Cited by

  1. Contribution analysis of interior noise and floor vibration in high-speed trains by operational transfer path analysis vol.9, pp.8, 2017, https://doi.org/10.1177/1687814017714986
  2. Research on the radiation characteristics of aerodynamic noises in the connection position of high-speed trains vol.19, pp.4, 2017, https://doi.org/10.21595/jve.2017.18307
  3. Aerodynamic noise radiating from the inter-coach windshield region of a high-speed train vol.37, pp.3, 2018, https://doi.org/10.1177/1461348417747178