DOI QR코드

DOI QR Code

Development of FE Models of the Heavy Obstacle for the EU-TSI and Domestic Rolling Stock Safety Regulations and Application to Collision Evaluation of the Korean High-speed EMU

EU의 TSI 규정 및 국내 철도차량안전기준의 대형장애물 유한요소모델 개발과 분산형 고속열차의 충돌성능평가에 적용

  • 김거영 (서울과학기술대학교 철도전문대학원) ;
  • 구정서 (서울과학기술대학교 철도전문대학원)
  • Received : 2011.06.01
  • Accepted : 2011.07.18
  • Published : 2011.08.26

Abstract

The purpose of this paper is to develop two kinds of finite element models for the heavy deformable obstacle defined in grade crossing collision scenario of the Europe TSI and the Korean rolling stock safety regulations and to apply the crashworthiness evaluation for the Korean high-speed EMU with the FE model. The numerical models of the heavy obstacle were changed from a past rigid one to a current deformable one whose stiffness requirement should be verified by a collision simulation defined in the regulations. Through several trial simulations, two types of numerical models for the heavy obstacle were developed, which satisfied physical properties specifies in the regulations. One is a solid-type obstacle with uniform density and the other is a shell-type. With the obstacles developed in this study, the grade crossing collision scenario for Korean high-speed EMU was simulated and evaluated for the two-type obstacle models. From the simulation results, the shell and solid-type obstacles showed quite different behaviors after collision, and the shell type model gave more severe results.

본 논문은 유럽 TSI와 국내철도차량안전기준에 정의된 건널목 충돌사고시나리오에서 요구하는 성능의 대형 변형체 장애물의 유한요소 모델에 대하여 2가지 종류의 모델을 개발하여 한국형 분산형 고속철도 차량에 적용하고 평가하였다. 규정에서 요구하는 대형 장애물은 기존 강체모델에서 현재의 변형체모델로 변경되었으며 규정에 정의된 방법으로 변형체 강성 값이 검증되어야 한다. 여러 번의 시뮬레이션을 통해 기준을 만족하는 균일한 밀도와 강성의 솔리드 형 장애물 모델과 균일하지 않은 셸 형 장애물 모델 등 2가지를 개발하였다. 본 연구에서 개발된 대형장애물을 사용하여 분산형 고속열차를 대상으로 규정의 대형장애물 충돌시뮬레이션을 수행하였고 그 결과를 평가하였다. 셸 형과 솔리드 형 장애물은 열차와 충돌 후 거동에 상당한 차이가 있었고, 셸 모델이 더 가혹한 결과를 나타내었다.

Keywords

References

  1. P.G. Llana (2009) Structural Crashworthiness Standard Comparison: Grade-crossing Collision Scenarios, Proceeding of RTDF2009, ASME Rail Transportation Division Fall Technical Conference, October 20-21, Ft. Worth, Texas, USA, RTDF 2009-18030.
  2. AEIF (2008) The technical specification for Interoperability relating to the rolling stock subsystem of the trans-European high-speed rail system, TSI, March, 2008.
  3. ANFOR (2005) Crashworthiness requirements for railway vehicle bodies, prEN15227, September, 2005.
  4. H.S. Han, J.S. Koo (2002) Simulation of Train Crashes in Three Dimension, Journal of the Korean Society for Railway, 5(3), pp. 187-195.
  5. J.S. Koo, H.J. Cho, D.S. Kim, Y.H. Youn (2001) An Evaluation of Crashworthiness for the Full Rake KHST Using 1-D Dynamic Model, Journal of the Korean Society for Railway, 4(3), pp. 94-101.
  6. ANFOR (2008) Crashworthiness requirements for railway vehicle bodies, EN15227, March, 2008.
  7. Ministry of construction and transportation (2007), Korean rolling stock safety regulation, MOCT notification No. 2007-278.
  8. AEIF (2002) The technical specification for Interoperability relating to the rolling stock subsystem of the trans-European high-speed rail system, TSI, May, 2002.
  9. J.O. Hallquist (2007) LS-Dyna Keyword User's Manual Version 971, Livemore Software Technology Corporation.
  10. G.Y. Kim, H.J. Cho, J.S. Koo, T.S. Kwon (2008) A Derivation of the Standard Design Guideline for Crashworthiness of High Speed Train with Power Cars, Transactions of KSAE, 16(6), pp. 157-167.
  11. M.Y. Park, Y.I. Park, J.S. Koo (2010) Equivalent Modeling Technique for 1-D Collision Dynamics Using 3-D Finite Element Analysis of Rollingstock, Journal of the Korean Society for Railway, 13(2), pp. 139-146.