DOI QR코드

DOI QR Code

A Novel Al-Bridged Trinuclear Iron(II) Bis(imino)pyridyl Complex with Catalytic Ethylene Polymerization Behavior

  • Long, Zerong (Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute) ;
  • Li, Zhongquan (Tarim Oilfield) ;
  • Ma, Ning (State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Wu, Biao (State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou institute of Chemical Physics, Chinese Academy of Sciences)
  • Received : 2011.06.08
  • Accepted : 2011.06.10
  • Published : 2011.08.20

Abstract

A self-assembled Al-bridged diiminopyridine-based ligand (3) was synthesized and characterized by FT-IR, ESI-MS and NMR spectroscopy. Electron spectral titrations were performed to confirm the formation of a novel trinuclear bis(imino)pyridyl iron(II) complex (4) upon addition of $FeCl_2$ into Al-bridged ligand 3 in methanol solution. Simultaneously, a typical bis(imino)pyridine-iron(II) complex (2) was synthesized and fully characterized. The X-ray crystal study of the iron(II) complex 2 disclosed a five-coordinate, distorted square-pyramidal structure with the tridentate N^N^N ligand and chlorides. The optimal molecular structure of 4 was obtained by means of molecular mechanics, which showed that each iron atom in the complex 4 is surrounded by two chlorides, a tridentate N^N^N ligand and one oxygen atom, supporting considerations about the possibility of six-coordinate geometry from MMAO or the ethylene access. A comparison of 4 with the reference 2 revealed a remarkable decrease of the catalytic activity and MMAO consumption (activity up to $0.41{\times}10^3\;kg\;{mol_{Fe}}^{-1}h^{-1}bar^{-1}$, Al/Fe = 650 for 4 and $7.02{\times}10^3\;kg\;{mol_{Fe}}^{-1}h^{-1}bar^{-1}$, Al/Fe = 1600 for 2).

Keywords

References

  1. Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem. Int. Ed. 1999, 38, 428. https://doi.org/10.1002/(SICI)1521-3773(19990215)38:4<428::AID-ANIE428>3.0.CO;2-3
  2. Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169. https://doi.org/10.1021/cr9804644
  3. Gibson, V. C.; Redshaw, C.; Solan, G. A. Chem. Rev. 2007, 107, 1745. https://doi.org/10.1021/cr068437y
  4. Britovsek, G. J. P.; Mastroianni, S.; Solan, G. A.; Baugh, S. P. D.; Redshaw, C.; Gibson, V. C.; White, A. J. P.; Williams, D. J.; Elsegood, M. R. J. Chem. Eur. J. 2006, 6, 2221.
  5. Yoshizawa, M.; Tamura, M.; Fujita, M. Science 2006, 312, 251. https://doi.org/10.1126/science.1124985
  6. Abraham, S.; Ha, C.-S.; Kim, I. Macromol. Rapid Commun. 2006, 27, 1386. https://doi.org/10.1002/marc.200600244
  7. Liu, J.; Li, Y.; Liu, J.; Li, Z. Macromolecules 2005, 38, 2559. https://doi.org/10.1021/ma047685y
  8. Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001. https://doi.org/10.1021/cr020018n
  9. Zhang, S.; Vystorop, I.; Tang, Z.; Sun, W.-H. Organometallics 2007, 26, 2456. https://doi.org/10.1021/om070062z
  10. Barbaro, P.; Bianchini, C.; Giambastiani, G.; Rios, I. G.; Meli, A.; Oberhauser, W.; Segarra, A. M.; Sorace, L.; Toti, A. Organometallics 2007, 26, 4639. https://doi.org/10.1021/om7005062
  11. Meyer, M.; Kersting, B.; Powers, R. E.; Raymond, K. N. Inorg. Chem. 1997, 36, 5179. https://doi.org/10.1021/ic970864u
  12. Kersting, B.; Meyer, M.; Powers, R. E.; Raymond, K. N. J. Am. Chem. Soc. 1996, 118, 7221. https://doi.org/10.1021/ja9613522
  13. Hou, Z.; Sunderland, C. J.; Nishio, T.; Raymond, K. N. J. Am. Chem. Soc. 1996, 118, 5148. https://doi.org/10.1021/ja9600946
  14. Enemark, E. J.; Stack, T. D. P. Inorg. Chem. 1996, 35, 2719. https://doi.org/10.1021/ic960022f
  15. Enemark, E. J.; Stack, T. D. P. Angew. Chem. Int. Ed. Engl. 1995, 34, 996. https://doi.org/10.1002/anie.199509961
  16. Albrecht, M.; Mirtschin, S.; de Groot, M.; Janser, I.; Runsink, J.; Raabe, G.; Kogej, M.; Schalley, C. A.; Froehlich, R. J. Am. Chem. Soc. 2005, 127, 10371. https://doi.org/10.1021/ja052326j
  17. Haino, T.; Shio, H.; Takano, R.; Fukazawa, Y. Chem. Commun. 2009, 2481.
  18. Long, Z.; Yang, P.; Xia, Y.; Yang, Z.; Wu, B. Tetra. Lett. 2009, 50, 1820. https://doi.org/10.1016/j.tetlet.2009.02.005
  19. Carver, F. J.; Hunter, C. A.; Livingstone, D. J.; McCabe, J. F.; Seward, E. M. Chem. Eur. J. 2002, 8, 2848.
  20. Addison, A. W.; Rao, T. N.; Reedijk, J.; van. Rijn, J.; Verschoor, G. C. J. Chem. Soc. Dalton Trans. 1984, 1349.
  21. Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Stromberg, S.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1999, 121, 8728. https://doi.org/10.1021/ja990449w
  22. Seitz, M.; Milius, W.; Alt, H. G. J. Mol. Cat A: Chem. 2007, 261, 246. https://doi.org/10.1016/j.molcata.2006.07.078
  23. Garcia-Cuesta, M. C.; Lozano, A. M.; Melendez-Martínez, J. J.; Luna-Giles, F.; Ortiz, A. L.; Gonzalez-Mendez, L. M.; Cumbrera, F. L. J. Appl. Cryst. 2004, 37, 993.
  24. Lii, J.-H.; Allinger, N. L. J. Am. Chem. Soc. 1989, 111, 8576. https://doi.org/10.1021/ja00205a003