DOI QR코드

DOI QR Code

Charge Transport Characteristics of Dye-Sensitized TiO2 Nanorods with Different Aspect Ratios

  • Kim, Eun-Yi (Department of Chemistry, Inha University) ;
  • Lee, Wan-In (Department of Chemistry, Inha University) ;
  • Whang, Chin Myung (School of Materials Science and Engineering, Inha University)
  • Received : 2011.05.29
  • Accepted : 2011.06.27
  • Published : 2011.08.20

Abstract

Nanocrystalline $TiO_2$ spherical particle (NP) with a dimension of 5 ${\times}$ 5.5 nm and several nanorods (NR) with different aspect ratios (diameter ${\times}$ length: 5 ${\times}$ 8.5, 4 ${\times}$ 15, 4 ${\times}$ 18 and 3.5 ${\times}$ 22 nm) were selectively synthesized by a solvothermal process combined with non-hydrolytic sol-gel reaction. With varying the molar ratio of TTIP to oleic acid from 1:1 to 1:16, the NRs in the pure anatase phase were elongated to the c-axis direction. The prepared NP and NRs were applied for the formation of nanoporous $TiO_2$ layers in dye-sensitized solar cell (DSSC). Among them, NR2 ($TiO_2$ nanorod with 4 ${\times}$ 15 nm) exhibited the highest cell performance: Its photovoltaic conversion efficiency (${\eta}$) of 6.07%, with $J_{sc}$ of 13.473 mA/$cm^2$, $V_{oc}$ of 0.640 V, and FF of 70.32%, was 1.44 times that of NP with a size of 5 ${\times}$ 5.5 nm. It was observed from the transient photoelectron spectroscopy and the incident photon to current conversion efficiency (IPCE) spectra that the $TiO_2$ films derived from NR2 demonstrate the longest electron diffusion length ($L_e$) and the highest external quantum efficiency (EQE).

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Jui, J.; Isoda, S.; Wang, F.; Adachi, M. J. Phys. Chem. B 2006, 110, 2087. https://doi.org/10.1021/jp055824n
  3. Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; Sakamoto, M.; Wang, F. J. Am. Chem. Soc. 2004, 126, 14943. https://doi.org/10.1021/ja048068s
  4. Papageogiou, N.; Barb, C.; Gratzel, M. J. Phys. Chem. B 1998, 102, 4156. https://doi.org/10.1021/jp980819n
  5. Gomez, M.; Lu, J.; Olsson, E.; Hagfeldt, A.; Granqvist, G. C. Sol. Energy Mater. Sol. Cells 2000, 64, 385. https://doi.org/10.1016/S0927-0248(00)00231-2
  6. Horiuchi, T.; Miura, H.; Uchida, S. Chem. Commun. 2003, 24, 3036.
  7. Barzykin, A. V.; Tachiya, M. J. Phys. Chem. B 2004, 108, 8385.
  8. Kay, A.; Gratzel, M. Chem. Mater. 2002, 14, 2930. https://doi.org/10.1021/cm0115968
  9. Song, M. Y.; Kim, D. K.; Ihn, K. J.; Jo, S. M.; Kim, D. Y. Nanotechnology 2004, 15, 1861. https://doi.org/10.1088/0957-4484/15/12/030
  10. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Grimes, C. A. Langmuir 2007, 23, 12445. https://doi.org/10.1021/la7020403
  11. Yoshida, K.; Jiu, J.; Naganatsu, D.; Nemoto, T.; Kurata, H.; Adachi, M.; Isoda, S. Mol. Cryst. Liq. Cryst. 2008, 491, 14. https://doi.org/10.1080/15421400802328675
  12. Fujihara, K.; Kumar, A.; Jose, R.; Ramakrishna, S.; Uchida, S. Nanotechnology 2007, 18, 365709/1.
  13. Lee, B. H.; Song, M. Y.; Jang, S. Y.; Jo, S. M.; Kwak, S. Y.; Kim, D. Y. J. Phys. Chem. C 2009, 113, 21453. https://doi.org/10.1021/jp907855x
  14. Wang, G. B.; Fu, M. G.; Li, B.; Du, G. P.; Li, L.; Qin, X. M.; Shi, Y. Z. Appl. Phys. A 2010, 100, 1169. https://doi.org/10.1007/s00339-010-5731-z
  15. Yang, D. J.; Park, H.; Cho, S. J.; Kim, H. G.; Choi, W. Y. J. Phys. Chem. Solids 2008, 69, 1272. https://doi.org/10.1016/j.jpcs.2007.10.107
  16. Miao, L.; Tanemura, S.; Toh, S.; Kaneko, K.; Tanemura, M. J. J. Cryst. Growth 2004, 264, 246. https://doi.org/10.1016/j.jcrysgro.2003.12.027
  17. Cozzoli, P. D.; Kormowski, A.; Weller, H. J. Am. Chem. Soc. 2003, 125, 14539. https://doi.org/10.1021/ja036505h
  18. Saji, V. S.; Pyo, M. Thin Solid Films 2010, 518, 6542. https://doi.org/10.1016/j.tsf.2010.02.070
  19. Baek, I. C.; Vithal, M.; Chang, J. A.; Yum, J. H.; Nazeeruddin, M. K.; Gratzel, M.; Chung, Y. C.; Seok, S. I. Electrochem. Commun. 2009, 11, 909. https://doi.org/10.1016/j.elecom.2009.02.026
  20. Kim, E. Y.; Choi, H.; Whang, C. M. J. Mater. Sci. 2010, 45, 3895. https://doi.org/10.1007/s10853-010-4448-x
  21. Nakade, S.; Kanzaki, T.; Wada, Y.; Yanagida, S. Langmuir 2005, 21, 10803. https://doi.org/10.1021/la051257j
  22. Lagemaat, J.; Park, N. G.; Frank, A. J. J. Phys. Chem. B 2000, 104, 2044. https://doi.org/10.1021/jp993172v
  23. Kern, R.; Sastrawan, R.; Ferver, J.; Stangl, R.; Luther, J. Electrochim. Acta 2002, 47, 4213. https://doi.org/10.1016/S0013-4686(02)00444-9
  24. Hoshikawa, T.; Yamada, M.; Kikuchi, R.; Eguchi, K. J. Electrochem. Soc. 2005, 152, E68. https://doi.org/10.1149/1.1849776
  25. Wang, Q.; Moster, J. E.; Gratzel, M. J. Phys. Chem. B 2005, 109, 14945. https://doi.org/10.1021/jp052768h
  26. Hauch, A.; Ceorg, A. Electrochim. Acta 2001, 46, 3457. https://doi.org/10.1016/S0013-4686(01)00540-0
  27. Bandic, Z. Z.; Bridger, P. M.; Piquette, E. C.; McGrill, T. C. Appl. Phys. Lett. 1998, 73, 3276. https://doi.org/10.1063/1.122743

Cited by

  1. Nanotube Arrays vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.4035
  2. One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells vol.4, pp.9, 2012, https://doi.org/10.1039/c2nr30347g
  3. Hybrid Titania Photoanodes with a Nanostructured Multi-Layer Configuration for Highly Efficient Dye-Sensitized Solar Cells vol.4, pp.9, 2013, https://doi.org/10.1021/jz400620q