DOI QR코드

DOI QR Code

Study on the Manufacturing Properties of Korean-type Koumiss

한국형 Koumiss제조 특성에 관한 연구

  • Lee, Jong-Ik (Dept. of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience & Technology, Konkuk University) ;
  • Song, Kwang-Young (Dept. of Public Health, College of Veterinary Medicine, Konkuk University) ;
  • Chon, Jung-Whan (Dept. of Public Health, College of Veterinary Medicine, Konkuk University) ;
  • Hyeon, Ji-Yeon (Dept. of Public Health, College of Veterinary Medicine, Konkuk University) ;
  • Seo, Kun-Ho (Dept. of Public Health, College of Veterinary Medicine, Konkuk University)
  • 이종익 (건국대학교 동물생명과학대학 축산식품생물공학) ;
  • 송광영 (건국대학교 수의과대학 공중보건학) ;
  • 천정환 (건국대학교 수의과대학 공중보건학) ;
  • 현지연 (건국대학교 수의과대학 공중보건학) ;
  • 서건호 (건국대학교 수의과대학 공중보건학)
  • Received : 2011.07.19
  • Accepted : 2011.09.10
  • Published : 2011.09.30

Abstract

For this study, Korean-type Koumiss was made by the fermentation of mixed cultures, in which yeast, Kuyveromyces, and microflora, Streptococcus thermophiles and Lactobacillus bulgaricus, were inoculated into 10% skimmed milk with added whey powder(control: A, 2%: B, 4%: C, 6%: D, and 8%: E). Fat, protein, lactose, titratable acidity, pH, the number of lactic acid bacteria, the number of yeast, alcohol content, volatile fatty acids, volatile free amino acids and minerals were measured in the products. The results were as follows: As the dosage of whey powder increased, fat increased from 0.74% in the control to 2.30% in sample E, protein increased from 2.95% in the control to 4.39% in sample E and lactose increased from 3.10% in the control to 7.43% in sample E. Titratable acidity and pH increased gradually. The number of lactic acid bacteria increased from $10^9\;cfu/m{\ell}$ in the control to $3.8{\times}10^9\;cfu/m{\ell}$ in sample E, and the number of yeast increased from $6.1{\times}10^7\;cfu/m{\ell}$ in the control to $1.65{\times}10^8\;cfu/m{\ell}$ in sample E, according to the increase of whey powder content. For alcohol content, the average values were 0.863%, 0.967%, 0.890%, 1.290%, and 1.313% for the control and samples B, C, D, and E, respectively. As the dosage of whey powder increased, alcohol content showed a tendency to gradually increase. The average alcohol content of E was 1.313 and this was higher than the alcohol content of Kazahstana-type Koumiss with 1.08%. Sixteen types of free amino acids were detected. Glycine was the lowest in the control at $0.38mg/m{\ell}$ and sample E contained $0.64mg/m{\ell}$. Histidine was also low in the control at $0.42mg/m{\ell}$ and sample E contained $0.65mg/m{\ell}$. On the other hand, glutamic acid was highest at $4.13mg/m{\ell}$ in the control whereas sample E had $6.96mg/m{\ell}$. Proline was also high in the control at $1.71mg/m{\ell}$ in control, but E contained $2.80mg/m{\ell}$. Aspartic acid and leucine were greater in sample E than in the control. For volatile free fatty acids, content generally had a tendency to increase in the control, and samples B, C, D, and E. Content of acetic acid gradually increased from $12,661{\mu}g/100m{\ell}$ in the control to $37,140{\mu}g/m{\ell}$ in sample E. Butyric acid was not detected in the control and was measured as $1,950{\mu}g/100m{\ell}$ in sample E. Caproic acid content was $177{\mu}g/100m{\ell}$ in the control and $812{\mu}g/100m{\ell}$ in sample E, and it increased according to the increase of whey powder content. Valeric acid was measured in a small amount in the control as $22{\mu}g/100m{\ell}$, but it was not detected in any other case. Mineral contents of Ca, P, and Mg increased from 1,042.38 ppm, 863.61 ppm, and 101.28 ppm in the control to 1,535.12 ppm, 1,336.71 ppm, and 162.44 ppm in sample E, respectively. Na content was increased from 447.19 ppm in the control to 1,001.57 ppm in sample E. The content of K was increased from 1,266.39 ppm in the control to 2,613.93 ppm in E. Mineral content also increased with whey powder content. In sensory evaluations, the scores increased as whey powder content increased. Flavor was lowest in the control with 6.3 points and highest in E with 8.2 points. Body and texture were highest at 4.2 points in the control, which did not have added whey powder. In the case of appearance, there were no great differences among the samples.

본 연구는 효모 Kuyveromyces fragilis와 유산균 Streptococcus thermophiles, Lactobacillus bulgaricus의 starter를 유청 분말(대조구: A, 2%: B, 4%: C, 6%: D, 8%: E)이 첨가된 탈지분유에 혼합 접종하여 한국형 Koumiss를 제조하였다. 이 제품의 지방, 단백질, 유당, 적정산도, pH, 생균수, 알코올 함량, 휘발성 지방산, 휘발성 유리아미노산 및 무기물을 측정하였다. 그 결과는 다음과 같았다. 유청 분말의 농도에 따라 지방 함량은 대조구 0.74%, B는 1.14%, C는 1.57%, D는 2.00%, E는 2.30%로 증가하였고, 단백질함량은 대조구 2.95%, B는 3.66%, C는 3.87%, D는 4.22%, E는 4.39%로 증가했으며, 유당 함량은 대조구 3.10%, B는 4.74%, C는 5.78%, D는 6.59%, E는 7.43%로 증가하였다. 농도에 따라 적정산도 및 pH도 점진적인 증가를 보였다. 유산균의 경우 유청 분말의 농도가 높을수록 증가하였는데, 대조구는 $2.4{\times}10^9\;cfu/m{\ell}$, B는 $2.7{\times}10^9\;cfu/m{\ell}$, C는 $3.1{\times}10^9\;cfu/m{\ell}$, D는 $3.4{\times}10^9\;cfu/m{\ell}$, E는 $3.8{\times}10^9\;cfu/m{\ell}$로 검출 되었고, 효모수는 유청 분말의 농도에 따라 대조구는 $6.1{\times}10^7\;cfu/m{\ell}$, B는 $8.6{\times}10^7\;cfu/m{\ell}$, C는 $1.08{\times}10^8\;cfu/m{\ell}$, D는 $1.27{\times}10^8\;cfu/m{\ell}$, E는 $1.65{\times}10^8\;cfu/m{\ell}$로 역시 증가하였다. 알코올 함량은 대조구의 평균이 0.863%, B의 평균은 0.963%, C의 평균은 0.890%, D의 평균은 1.290%, E의 평균은 1.313%로 유청 분말의 농도가 높을수록 알코올 함량도 점진적으로 증가하는 경향을 보여주었다. E에서 알코올 함량 평균 1.313%는 카자흐스탄 Koumiss의 알코올 함량 평균 1.08%보다 높게 나타났다. 유리아미노산은 모두 16종의 아미노산이 검출되었다. Glycine은 대조구에서 0.38 mg/$m{\ell}$로 E에서는 0.64 mg/$m{\ell}$로 유청 분말 농도에 따라 높아졌으며, histidine도 대조구가 0.42 mg/$m{\ell}$에서 E는 0.65 mg/$m{\ell}$로 높아졌다. 반면에 glutamic acid는 대조구가 4.13 mg/$m{\ell}$에서 E가 6.96 mg/$m{\ell}$로 함량이 높아졌으며, proline도 대조구가 1.71 mg/$m{\ell}$에서 E가 2.80 mg/$m{\ell}$로 높아졌다. Aspartic acid, leucine도 대조구보다 E가 더 많이 함유된 것으로 나타났다. 휘발성 유리지방산의 경우에서도 대조구와 B, C, D, E의 휘발성 유리지방산의 함량이 대체로 증가하는 경향을 보여주었고, 초산은 대조구의 함량이 $12,661{\mu}g/100 m{\ell}$이었고, E에서는 $37,140{\mu}g/100m{\ell}$로 증가하였다. 낙산은 대조구에서는 측정되지 않았고, E에서 $1,950{\mu}g/100m{\ell}$로 측정되었으며, 가프른산에서는 대조구가 $177{\mu}g/100m{\ell}$이었고, E에서는 $812{\mu}/100m{\ell}$로 함량이 증가하였다. 발레린산은 대조구에서 $22{\mu}g/100m{\ell}$로 미량 측정되었으나, 다른 시험구에서는 측정되지 않았다. 무기물 Ca, P, Mg, Na, K의 각각의 성분은 Ca의 경우 대조구가 1,042.38 ppm에서 E는 1,535.12 ppm으로, P의 경우 대조구가 863.61 ppm에서 E는 1,336.71 ppm으로, Mg의 경우 대조구가 101.28 ppm에서 E는 162.44 ppm으로, Na의 경우 대조구가 447.19 ppm에서 E는 1,001.57 ppm으로, K의 경우 대조구가 1,266.39 ppm에서 E는 2,613.93 ppm으로 유청 분말의 함량이 높을수록 무기물 또한 증가하는 것으로 나타났다. 관능검사는 유청 분말의 첨가가 많을수록 전반적으로 점수가 높음을 보여주었다. 풍미는 대조구가 6.3점으로 가장 낮았고, E는 8.2점으로 가장 높았다. 조직은 유청 분말을 첨가하지 않은 대조구가 4.2점으로 가장 높게 나타났고, 외관은 시험구들 사이에 별 차이를 보이지 않았다.

Keywords

References

  1. Amerine, MA, Berg HW, Cruess WW. 1967. The Technology of Wine Making. 3rd ed. p.76. AVI Company Inc.
  2. AOAC. 1995. Official Methods of Analysis. 13th ed. pp.125- 132. The Association of Official Analytical Chemists
  3. APHA. 1993. Standard Methods for the Examination of Dairy Products. 16th ed. pp.100-105. American Public Health Association
  4. Ascherio A, Rimm EB, Hernán MA, Giovannucci EL, Kawachi I, Stampfer MJ, Willett WC. 1998. Intake of potassium, magnesium, calcium, and fiber and risk of stroke among US men. Circulation 98:1198-1204 https://doi.org/10.1161/01.CIR.98.12.1198
  5. Baek YJ. 1993. Lactic acid bacteria and human health. Korean J Food & Nutrition 6:53-65
  6. Bodyfelt FW, Tobias J, Trout GM. 1988. The Sensory Evaluation of Dairy Products. p.598. Van Nortand Reinhold
  7. Cha KJ, Kim YS, Li YK, Song JO, Jo HC, Lee KB, Kim YH, Lee JL, Lee KY, Yu JH. 1997. Studies on the characteristics of Koumiss made from skim milk powder by yeast isolated from Kazakhstan Koumiss. Korean J Food Sci Ani Resour 17:155-161
  8. Chen Y, Wang Z, Chen X, Liu Y, Zhang H, Sun T. 2010. Identification of angiotensin I-converting enzyme inhibitory peptides from Koumiss, a traditional fermented mare's milk. J Dairy Sci 93:884-892. https://doi.org/10.3168/jds.2009-2672
  9. Cho CH, Lee MS, Ko MS, Kim CH, Han SH. 1994. Studies on the characteristics of alcohol fermented milk from whey. Korean J Food Sci Resour 14:41-46
  10. Chung SY. 1988. Nutrient function and metabolism of calcium. Food & Nutr 9:12-16
  11. Deeth HC, Fitz-Gerald CH, Snow AJ, 1983. A gas chromatographic method for the quantitative determination of free fatty acid in milk and milk products. New Zealand J Dairy Sci Technol 18:13-20
  12. Engel ER. 1952. Improvements in or relating to a process of producing an alcoholic beverage and a solid residuum from whey. British Patent 669894
  13. Engel ER. 1984. Fermenting whey. US Patent 2449064
  14. Fedechko IM, Hrytsko RIu, Herasun BA. 1995. The anti-immunodepressive action of kumiss made from cow's milk. Lik Sprava Sep-Dec:104-106
  15. Ham JS, In YM, Jeong SG, Kim DW, Kim HB, Kim YK, Ahn YT, Kim HU. 2000. Goat milk Koumiss and lactic acid production of Candida Kefir. J Korean Dairy Technol Sci 18:151-163
  16. Holsinger VH, Posati LP, Devilbuss ED. 1974. Whey beverages, A review. J Dairy Sci 57:849-859 https://doi.org/10.3168/jds.S0022-0302(74)84976-3
  17. Iso H, Meir J. Stampfer MJ, Manson JE, Rexrode K, Hennekens CH, Colditz GA, Speizer FE, Willett WC. 1999. Prospective study of calcium, potassium, and magnesium intake and risk of stroke in women. Stroke 30:1772-1779 https://doi.org/10.1161/01.STR.30.9.1772
  18. Kang SJ. 1987. Nutrition. pp.151-171. Hyungsul Publishing Co. LTD
  19. Kim DS. 1982. Effects of Koumiss for pulmonary tuberculosis. Korean J Dairy Sci 4:197-201
  20. Kim JW. 1981. Studies on the manufacturing of alcohol fermented milk beverage. Research Reports of Agricultural Science and Technology-Chungnam University 8:171-178
  21. Kosikowski F. 1982. Cheese and Fermented Milk Food. 2nd ed. pp.42-46. Edwards Brothers Inc.
  22. Kucukcetin A, Yaygin H, Hinrichs J, Kulozik U. 2003. Adaptation of bovine milk towards mares' milk composition by means of membrane technology for Koumiss manufacture. Int'l Dairy J 13:945-951 https://doi.org/10.1016/S0958-6946(03)00143-2
  23. Lang F, Lang A. 1970. A study of Koumiss manufacture as a potential new outlet for milk. The Milk Industry 67:22-25
  24. Lang F, Lang A. 1973. Cultured milk products. Food Manuf 48:23-28
  25. Lee JK, Song KY, Chon JW, Hyeon JY, Seo KH. 2010. Physicochemical properties of Kefir as dietary supplementary for curing the diabetic mouse. Korean J Food & Nutrition 23:462-469
  26. Liu SN, Han Y, Zhou ZJ. 2011. Lactic acid bacteria in traditional fermented Chinese food. Rood Research Int'l 44:643-651
  27. Lodder T. 1970. The Yeasts. 1st ed. North-Holland Publishing Co.
  28. Nakanishi T. 1967. The Microbiology of Milk and Milk Products. pp.156-157. Earth Publishing Co. LTD.
  29. Oberman H. 1985. Microbiology of Fermented Foods. pp.167-195. Elsevier Applied Science Publishers
  30. Ochi T, Nakanishi T. 1976. Basic research on the manufacture of ethanol-fermented milk beverages. VI. Volatile carbonyl compounds in the various alcohol fermented skim-milk. Jpn J Dairy Sci 24:A121-A126
  31. Ollson G. 1981. Kefir a miracle of nature. Lives medelsteknik 23:428-429
  32. Pan DD, Zeng XQ, Yan YT. 2011. Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. J Sci Food Agric 91:512-518 https://doi.org/10.1002/jsfa.4214
  33. Park SO. 1994. Studies on the content of minerals and heavy metals in milk and milk products. Master degree thesis, Konkuk University
  34. Pastukhova ZM, Gerbeda VV. 1982. Comparative lipid composition of mare's milk and a Koumiss mixture prepared with cow's milk. Vopr Pitan Jan-Feb:34-36
  35. Puhan Z, Gallman P. 1980. Ultrafiltration in the manufacture of Koumiss and Quark. Cult Dairy Prod J 15:12-16
  36. Roland JF, Alm WL. 1975. Wine fermentations using mimbane processed hydrolyzed whey. Biotechnol Bioeng 17:1443-1453 https://doi.org/10.1002/bit.260171005
  37. Schulz ME, Fackelmeier K. 1948. Fermented beverages from plant extracts and whey. Milchwissenschaft 3:165-174
  38. Urbanski Z. 1966. Manufacture of milk beverages. Dairy Sci Abst 33:3940
  39. Vajdi M, Pereira RR. 1973. The feasibility of whey utilization for the production of various drinks. Mod Dairy 52:14
  40. Yoo JT, Kim TA. 1982. Studies on the production of alcohol fermented milk. J Food Sci Technol 10:337-343
  41. Yoon, CH, An SI, Jeong AR, Han SE, Kim MH, Lee CW. 2010. Characteristics of whey protein(WPC-30) hydrolysate from cheese whey. Korean J Ani Sci Technol 52:435-440 https://doi.org/10.5187/JAST.2010.52.5.435
  42. Zhang W, Yu D, Sun Z, Wu R, Chen X, Chen W, Meng H, Hu S, Zhang H. 2010. Complete genome sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from traditional homemade Koumiss in Inner Mongolia, China. J Bacteriol 192:5268-5269 https://doi.org/10.1128/JB.00802-10

Cited by

  1. Manufacture of Functional Koumiss supplemented with Cichorium intybus L. (chicory) Extract - Preliminary Study vol.35, pp.1, 2017, https://doi.org/10.22424/jmsb.2017.35.1.001
  2. Sensory Profiles of Koumiss with added Crude Ingredients extracted from Flaxseed (Linum usitatissimum L.) vol.35, pp.3, 2017, https://doi.org/10.22424/jmsb.2017.35.3.169