DOI QR코드

DOI QR Code

Fabrication and characteristics of ZnO nanorods grown on Zn substrates by the hydrothermal method

수열합성법에 의해 Zn 기판 위에 제조된 ZnO 나노로드의 특성

  • Sung, Ji-Hye (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Materials Center) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Materials Center) ;
  • Hwang, Jong-Hee (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Materials Center) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Materials Center) ;
  • Yeon, Deuk-Ho (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Materials Center) ;
  • Cho, Yong-Soo (Department of Materials Science and Engineering, Yonsei University)
  • 성지혜 (한국세라믹기술원 전자.광소재 센터) ;
  • 김진호 (한국세라믹기술원 전자.광소재 센터) ;
  • 황종희 (한국세라믹기술원 전자.광소재 센터) ;
  • 임태영 (한국세라믹기술원 전자.광소재 센터) ;
  • 연득호 (한국세라믹기술원 전자.광소재 센터) ;
  • 조용수 (연세대학교 신소재공학과)
  • Received : 2011.07.05
  • Accepted : 2011.08.05
  • Published : 2011.08.31

Abstract

ZnO nanorods fabricated on a Zn substrate pre-coated with ZnO as a seed layer by the hydrothermal method were studied mainly as a function of ZnO precursor concentration. Characteristic features by using field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were investigated to define the changed micro-structure and crystalline phase of the ZnO nanorods according to the experimental conditions. The nanorod morphology strongly depended on the precursor concentration. For example, ZnO nanorods vertically aligned with a hexagonal (002) oriented structure with a diameter of 600~700 nm and length of $6.75{\mu}m$ were clearly observed at the highest concentration of 0.015 M. The strong hexagonal structure was believed to be associated with the highest photoluminescene (PL) intensity and a promising voltage value of ca. 6.069 V at $1000{\mu}A$.

수열합성법에 의해 ZnO 씨앗층이 코팅된 Zn 기판 위에 제조된 ZnO 나노로드는 주로 ZnO 전구체 농도에 따라 연구되었다. 주사전자현미경과 X선 회절분석기를 사용하여 얻은 그림은 실험 조건에 따라 변화되는 ZnO 나노로드의 미세구조와 결정상을 밝혀내기 위해 측정되었다. 나노로드의 형태는 전구체 농도에 강하게 결정된다. 예를 들어, 600~700 nm의 직경과 $6.75{\mu}m$의 길이를 갖는 육방정계 구조의 수직 성장된 ZnO 나노로드는 0.015 M의 가장 높은 농도에서 명확하게 관찰되었다. 강한 육방정계 구조는 가장 높은 PL 강도와 $1000{\mu}A$에서 약 6.069 V의 우수한 전압 값과 관련이 있다고 생각된다.

Keywords

References

  1. Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev and D.M. Bagnall, "Fabrication and characterization of n-ZnO/p- AlGaN heterojunction light-emitting diodes on 6H-SiC substrates", J. Am. Ceram. Soc. 83 (2003) 4719.
  2. Z.L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Science 312 (2006) 14.
  3. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, D. Steeves, B. Kimball and W. Porter "ZnO nanowalls", Appl. Phys. A. 78 (2004) 539. https://doi.org/10.1007/s00339-003-2391-2
  4. Y.J. Kim, G. Cao, Y.C. Kim, S.J. Ahn and J.W. Min,"Fabrication of 2-dimensional ZnO nanowall structure", J. Ceram. Soc. 42 (2005) 521. https://doi.org/10.4191/KCERS.2005.42.7.521
  5. L. Vayssiers, K. Keis, S.E. Lindquist and A. Hagfeldt, "Purpose built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO", J. Phys. Chem. B 105 (2001) 3350. https://doi.org/10.1021/jp010026s
  6. B. Liu and H.C. Zeng, "Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm", J. Am. Chem. Soc. 125 (2003) 4430. https://doi.org/10.1021/ja0299452
  7. X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang and D. Zhu, "Reversible super-hydrophobicity to super hydrophilicity transition of aligned ZnO nanorod films", J. Am. Chem. Soc. 126 (2004) 62. https://doi.org/10.1021/ja038636o
  8. Y.J. Kim, H. Shang and G. Cao, "Growth and characterization of [001] ZnO nanorod array on ITO substrate with electiric field assisted nucleation", J. Sol-gel Sci. Tech. 38 (2006) 79. https://doi.org/10.1007/s10971-006-5731-9
  9. A. Sugunam, H.C. Warad, M. Boman and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrate: role of hexamine", J. Sol-Gel Sci. Tech. 39 (2006) 49. https://doi.org/10.1007/s10971-006-6969-y
  10. T. Hou, Li Jun, K.M. Smith, P. Nguyen, A. Cassell, J. Han and M. Meyyappan, "Growth of epitaxial nanowires at the junction of nanowalls", Science 300 (2003) 1249. https://doi.org/10.1126/science.1082542
  11. Y. Zhou, P.J. Kelly, A. Postill, O. Abu-zeid and A.A. Alnajjar, "The characteristics of aluminium-doped zinc oxide films prepared by pulsed magnetron sputtering from powder targets", Thin Soild Films 33-39 (2004) 447.
  12. T.M. Barnes, J. Leaf, C. Fry and C.A. Wolden, "Room temperature chemical vapor deposition of c-axis ZnO", J. Cryst. Growth 274 (2005) 412. https://doi.org/10.1016/j.jcrysgro.2004.10.015
  13. Y. Yang and H. Chen, "Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives", J. Cryst. Growth 263 (2004) 447. https://doi.org/10.1016/j.jcrysgro.2003.12.010
  14. P. Saravanan, S. Alam and G.N. Mathur, "Synthesis of ZnO and ZnS nanocrystals by thermal decomposition of zinc (II) cupferron complex", Mater. Lett. 58 (2004) 3528. https://doi.org/10.1016/j.matlet.2004.05.084
  15. Y.E. Sun, G.M. Fuge and M.N.R. Ashfold, "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods," Chemical Physics Lett. 396 (2004) 2126.
  16. J.H. Lee, K.H. Ko and B.O. Park, "Electrical and optical properties of ZnO transparent conducting films by the sol-gel method", J. of Crystal Growth 247 (2003) 119. https://doi.org/10.1016/S0022-0248(02)01907-3
  17. R. Ghosh, G.K. Paul and D. Basak, "Effect of thermal annealing treatment on structural electrical and optical properties of transparent sol-gel ZnO thin films", Materials Research Bull. 40 (2005) 1905. https://doi.org/10.1016/j.materresbull.2005.06.010
  18. Y.T. Yin, W.X. Que and C.H. Kam, "ZnO nanorods on ZnO seed layer derived by sol-gel process", J. Sol-Gel Sci. Tech. 53 (2010) 605. https://doi.org/10.1007/s10971-009-2138-4
  19. R. Wahab, Y.S. Kim and H.S. Shin, "Effect of refluxing time on the morphology of pencil like zinc oxide nanostructures prepared by solution method", Met. Mater. Int. 16 (2010) 767. https://doi.org/10.1007/s12540-010-1011-x
  20. S.A. Studenikin, M Cocivera, W. Kellner and H. Pascher, "Band-edge photoluminescence in polycrystalline ZnO films at 1.7 K", Journal of Luminescence 91 (2000) 223. https://doi.org/10.1016/S0022-2313(00)00213-1
  21. X. Wang, J. Song and Z.L. Wang "Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices", J. Mater. Chem. 17 (2007) 711. https://doi.org/10.1039/b616963p
  22. X. Wang, J. Song and Z.L. Wang "Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices", J. Mater. Chem. 17 (2007) 711. https://doi.org/10.1039/b616963p
  23. D. Chu, Y. Masude, T. Ohji and K. Kato, "Formation and photocatalytic application of ZnO nanotubes using aqueous solution", Langmuir 26(4) (2010) 2811. https://doi.org/10.1021/la902866a
  24. Y. Zhang, G. Du, B. Liu, H.C. Zhu, T. Yang, W. Li, D. Liu and S. Yang, "Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by lowpressure MOCVD", J. Crystal Growth 262 (2004) 456. https://doi.org/10.1016/j.jcrysgro.2003.10.079
  25. A. Chatterjee, C.H. Shen, A. Ganguly, L.C. Chen, C.W. Hsu, J.Y. Hwang and K.H. Chen, "Strong room-temperature UV emission of nanocrystalline ZnO films derived from a polymeric solution", Chem. Phys. Lett. 391 (2004) 278. https://doi.org/10.1016/j.cplett.2004.05.021
  26. P.T. Hsieh, Y.C. Chena, K.S. Kao, M.S. Lee and C.C. Cheng, "The ultraviolet emission mechanism of ZnO thin film fabricated by sol-gel technology", J. European Ceramic Society 27 (2007) 381.