DOI QR코드

DOI QR Code

Early stage of heteroepitaxial Ge growth on Si(100) substrate with surface treatments using inductively coupled plasma (ICP)

ICP 표면 처리된 Si 기판 위에 성장된 Ge 층의 초기 성장 상태 연구

  • Yang, Hyun-Duk (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University) ;
  • Kil, Yeon-Ho (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University) ;
  • Shim, Kyu-Hwan (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University) ;
  • Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University)
  • 양현덕 (전북대학교 반도체 화학공학부, 반도체물성연구소) ;
  • 길연호 (전북대학교 반도체 화학공학부, 반도체물성연구소) ;
  • 심규환 (전북대학교 반도체 화학공학부, 반도체물성연구소) ;
  • 최철종 (전북대학교 반도체 화학공학부, 반도체물성연구소)
  • Received : 2011.06.27
  • Accepted : 2011.07.15
  • Published : 2011.08.31

Abstract

We have investigated the effect of inductively coupled plasma (ICP) treatment on the early growth stage of heteroepitaxial Ge layers grown on Si(100) substrates using low pressure chemical vapor deposition (LPCVD), The Si(100) substrates were treated by ICP process with various source and bias powers, followed by the Ge deposition, The ICP treatment led to the enhancement in the coalescence of Ge islands, The growth rate of Ge on Si(100) with ICP surface treatment is about 5 times higher than that without ICP surface treatment. A missing dimer caused by the ICP surface treatment can act as a nucleation site for Ge adatoms, which could be responsible for the improvement in growth behavior of Ge on Si(100) substrates.

Inductively Coupled Plasma(ICP)를 이용하여 다양한 조건으로 표면 처리한 Si(100) 기관 위에 Low Pressure Chemical Vapor Deposition(LPCVD)를 이용하여 Ge 층을 이종접합 성장하고, Ge 층 성장 초기의 표면 상태를 Scanning Electron Microscopy(SEM)을 통해 분석하였다. ICP를 이용하여 표면 처리된 Si(100) 기판 위에 성장된 Ge 층의 경우 ICP 처리하지 않은 시편보다 Ge 성장율이 약 5배 이상 증가되었다. ICP 처리된 시편의 Ge 성장률 증가는 ICP 표면 처리 공정으로 Si 기관 표면에서 떨어져 나간 missing dimer가 Ge adatom들에 핵을 형성할 자리를 제공하여 Ge island의 형성과 융합을 촉진시키는 것으로 사료된다.

Keywords

References

  1. M.E. Groenert, C.W. Leitz, A.J. Pitera, V. Yang, H. Lee, R.J. Ram and E.A. Fitzgerald, "Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers", J. Appl. Phys. 93 (2003) 362. https://doi.org/10.1063/1.1525865
  2. A.W. Fang, H. Park, O. Cohen, R. Jones, M.J. Paniccia and J.E. Bowers, "Electrically pumped hybrid AlGaInAssilicon evanescent race track laser and photodetector", Opt. Exp. 14 (2006) 9203. https://doi.org/10.1364/OE.14.009203
  3. J.F. Liu, X. Sun, D. Pan, X. Wang, L.C. Kimerling, T.L. Koch and J. Michel, "Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si", Opt. Exp. 15 (2007) 11272. https://doi.org/10.1364/OE.15.011272
  4. X. Sun, J. Liu, L.C. Kimerling and J. Michel, "Direct gap photoluminescence of n-type tensile-strained Ge-on- Si", Appl. Phys. Lett. 95 (2009) 011911. https://doi.org/10.1063/1.3170870
  5. X. Sun, J. Liu, L.C. Kimerling, J. Michel and T.L. Koch, "Band engineered Ge as gain medium for Sibased lasers", presented at the Integr. Photon. Nanophoton. Res. Appl., Boston, MA, 2008, Paper IMC5.
  6. J. Liu, X. Sun, L.C. Kimerling and J. Michel, "Towards a Ge-based laser for CMOS applications", in Proc. 5th IEEE Int. Conf. Group IV Photon., Sorrento, Italy, Sep. 2008, pp. 16-18 (IEEE Catalog No. CFP08GFPCDR).
  7. X. Sun, J. Liu, L.C. Kimerling and J. Michel, "Room temperature direct band gap electroluminescence from Ge-on-Si light emitting diodes", Opt. Lett. 34 (2009) 1198. https://doi.org/10.1364/OL.34.001198
  8. C.O. Chui, S. Ramanathan, B.B. Triplett, P.C. McIntyre and K.C. Saraswat, "Germanium MOS capactors incorporating ultrathin high-k gate dielectric", IEEE Electron Device Lett. 23 (2002) 473. https://doi.org/10.1109/LED.2002.801319
  9. J.M. Hartmann, A. Abbadie, A.M. Papon, P. Holliger, G. Rolland, T. Billon, J.M. Fedeli, M. Rouviere, L. Vivien and S. Laval, "Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3-1.55 $\mu$m photodetection", J. Appl. Phys. 95 (2004) 5905. https://doi.org/10.1063/1.1699524
  10. L. Colace, G. Masini, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange and F. Evangelisti, "Metal-semiconductor- metal near infrared light detector based on epitaxial Ge/Si", Appl. Phys. Lett. 72 (1998) 3175. https://doi.org/10.1063/1.121584
  11. J. Oh, P. Majhi, H.D. Lee, K.T. Lee, W.H. Choi, J.W. Yang, C.Y. Kang, R. Harris, S.C. Song, P. Kalra, S. Lee,S. Banerjee, B.H. Lee, H.H. Tseng and R. Jammy, "Formation of shallow junctions using Ge-Si heterostructures of high mobility channel MOSFETs", Ext. Abs. the 7th International Workshop on Junction Technology (Kyoto, Japan, 2007) p. 55.
  12. K. Saraswat, C.O. Chui, T. Krishnamohan, D. Kim, A. Nayfeh and A. Pethe, "High performance germanium MOSFETs", Mat. Sci. Eng. B 135 (2006) 242. https://doi.org/10.1016/j.mseb.2006.08.014
  13. M.M. Oye, D. Shahrjerdi, I. Ok, J.B. Hurst, S.D. Lewis, S. Dey, D.Q. Kelly, S. Joshi, X. Yu, M.A. Wistey, J.J.S. Harris, J.A.L. Holmes, J.C. Lee, S.K. Banerjee and T.J. Mattord, "Molecular-beam epitaxy growth of devicecompatible GaAs on silicon substrates with thin (-80 nm) $Si_{1-x}Ge_{x}$ step-graded buffer layers for high-k III-V metal-oxide-semiconductor field effect transistor applications", J. Vac. Sci. Technol. B. 25 (2007) 1098.
  14. C.O. Chui, A.K. Okyay and K.C. saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors", IEEE Photonics Technol. Lett. 15 (2003) 1585. https://doi.org/10.1109/LPT.2003.818683
  15. Y. Zhang and J. Drucker, "Annealing-induced Ge/Si(100) island evolution", J. Appl. Phys. 93 (2003) 9583. https://doi.org/10.1063/1.1575914
  16. M.R. Mckay, J. Shumway and J. Drucker, "Real-time coarsening dynamics of Ge/Si(100) nanostructures", J. Appl. Phys. 99 (2006) 094305. https://doi.org/10.1063/1.2191574
  17. Y.W. Mo and M.G. Lagally, "Scanning tunneling microscopy study of the growth process of Ge on Si(001)", J. Cryst. Growth 111 (1991) 876. https://doi.org/10.1016/0022-0248(91)91100-O
  18. X. Chen, F. Wu, Z. Zhang and M.G. Lagally, "Vacancyvacancy interaction on Ge-covered Si(001)", Phys. Rev. Lett. 73 (1994) 850. https://doi.org/10.1103/PhysRevLett.73.850
  19. C. Roland and G.H. Gilmer, "Growth of germanium films on Si(001) substrates", Phys. Rev. B 47 (1993) 16286. https://doi.org/10.1103/PhysRevB.47.16286
  20. B.D. Yu and A. Oshiyama, "Structures and reactions of missing dimmers in epitaxial Growth of Ge on Si(100)", Phys. Rev. B 52 (1995) 8337. https://doi.org/10.1103/PhysRevB.52.8337

Cited by

  1. Effects of Ni layer as a diffusion barrier on the aluminum-induced crystallization of the amorphous silicon on the aluminum substrate vol.22, pp.2, 2012, https://doi.org/10.6111/JKCGCT.2012.22.2.065