DOI QR코드

DOI QR Code

Synthesis of One-dimensional Spinel LiMn2O4 Nanostructures as a Positive Electrode in Lithium Ion Battery

  • Lee, Hyun-Wook (Department of Materials Science and Engineering, KAIST) ;
  • Muralidharan, P. (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Do-Kyung (Department of Materials Science and Engineering, KAIST)
  • Received : 2011.08.12
  • Accepted : 2011.09.01
  • Published : 2011.09.30

Abstract

This paper presents the synthesis of one-dimensional spinel $LiMn_2O_4$ nanostructures using a facile and scalable two-step process. $LiMn_2O_4$ nanorods with average diameter of 100 nm and length of 1.5 ${\mu}m$ have been prepared by solid-state lithiation of hydrothermally synthesized ${\beta}$-$MnO_2$ nanorods. $LiMn_2O_4$ nanowires with diameter of 10 nm and length of several micrometers have been fabricated via solid-state lithiation of ${\beta}$-$MnO_2$ nanowires. The precursors have been lithiated with LiOH and reaction temperature and pressure have been controlled. The complete structural transformation to cubic phase and the maintenance of 1-D nanostructure morphology have been evaluated by XRD, SEM, and TEM analysis. The size distribution of the spinel $LiMn_2O_4$ nanorods/wires has been similar to the $MnO_2$ precursors. By control of reaction pressure, cubic 1-D spinel $LiMn_2O_4$ nanostructures have been fabricated from tetragonal $MnO_2$ precursors even below $500^{\circ}C$.

Keywords

References

  1. J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414 [6861] 359-67 (2001). https://doi.org/10.1038/35104644
  2. M. S. Whittingham, "Lithium Batteries and Cathode Materials," Chem. Rev., 104 [10] 4271-301 (2004). https://doi.org/10.1021/cr020731c
  3. B. L. Ellis, K. T. Lee, and L. F. Nazar, "Positive Electrode Materials for Li-Ion and Li-Batteries," Chem. Mater., 22 [3] 691-714 (2010). https://doi.org/10.1021/cm902696j
  4. C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "High Performance Lithium Battery Anodes Using Silicon Nanowires," Nature Nanotech., 3 [1] 31-5 (2008). https://doi.org/10.1038/nnano.2007.411
  5. S.-W. Kim, H.-W. Lee, P. Muralidharan, D.-H. Seo, W.-S. Yoon, D. K. Kim, and K. Kang, "Electrochemical Performance and ex situ Analysis of $ZnMn_2O_4$ Nanowires as Anode Materials for Lithium Rechargeable Batteries," Nano Res., 4 [5] 505-10 (2011). https://doi.org/10.1007/s12274-011-0106-0
  6. B.-H. Choi, D.-J. Lee, M.-J. Ji, Y.-J. Kwon, and S.-T. Park, "Study of the Electrochemical Properties of $Li_4Ti_5O_{12}$ Doped with Ba and Sr Anodes for Lithium-Ion Secondary Batteries," J. Kor. Ceram. Soc., 47 [6] 638-42 (2010). https://doi.org/10.4191/KCERS.2010.47.6.638
  7. Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, and K. Amine, "High-energy Cathode Material for Long-life and Safe Lithium Batteries," Nat. Mater., 8 [4] 320-24 (2009). https://doi.org/10.1038/nmat2418
  8. S.-Y. Chung, J. T. Bloking, and Y.-M. Chiang, "Electronically Conductive Phospho-olivines as Lithium Storage Electrodes," Nat. Mater., 1 [2] 123-28 (2002). https://doi.org/10.1038/nmat732
  9. V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La Salle, A. Verbaere, D. Guyomard, and Y. Piffard, "$LiMBO_3$ (M = Mn, Fe, Co): Synthesis, Crystal Structure and Lithium Deinsertion/insertion Properties," Solid State Ionics, 139 [1-2] 37-46 (2001). https://doi.org/10.1016/S0167-2738(00)00813-4
  10. A. R. Naghash and J. Y. Lee, "Lithium Nickel Oxyfluoride $(Li_{1−z}Ni_{1+z}F_yO_{2−y})$ and Lithium Magnesium Nickel Oxide $(Li_{1−z}(Mg_xNi_{1−x})(_{1+z})O_2)$ Cathodes for Lithium Rechargeable Batteries II. Electrochemical Investigations," Electrochim. Acta, 46 [15] 2293-304 (2001). https://doi.org/10.1016/S0013-4686(01)00452-2
  11. S. H. Park, Y. K. Sun, K. S. Park, K. S. Nahm, Y. S. Lee, and M. Yoshio, "Synthesis and Electrochemical Properties of Lithium Nickel Oxysulfide $(LiNiS_yO_{2−y})$ Material for Lithium Secondary Batteries," Electrochim. Acta, 47 [11] 1721-26 (2002). https://doi.org/10.1016/S0013-4686(02)00023-3
  12. A. D. Tevar and J. F. Whitacre, "Relating Synthesis Conditions and Electrochemical Performance for the Sodium Intercalation Compound $Na_4Mn_9O_{18}$ in Aqueous Electrolyte," J. Electrochem. Soc., 157 [7] A870-75 (2010). https://doi.org/10.1149/1.3428667
  13. S. Komaba, C. Takei, T. Nakayama, A. Ogata, and N. Yabuuchi. "Electrochemical Intercalation Activity of Layered $NaCrO_2$ vs. $LiCrO_2$," Electrochem. Commun., 12 [3] 355-58 (2010). https://doi.org/10.1016/j.elecom.2009.12.033
  14. R. Ruffo, C. Wessells, R. A. Huggins, and Y. Cui, "Electrochemical Behavior of $LiCoO_2$ as Aqueous Lithium-ion Battery Electrodes," Electrochem. Commun., 11 [2] 247-49 (2009). https://doi.org/10.1016/j.elecom.2008.11.015
  15. M. Galinski, A. Lewandowski, and I. Stepniak, "Ionic Liquids as Electrolytes," Electrochim. Acta, 51 [26] 5567-80 (2006). https://doi.org/10.1016/j.electacta.2006.03.016
  16. J. Y. Song, Y. Y. Wang, and C. C. Wan, "Review of Gel-type Polymer Electrolytes for Lithium-ion Batteries," J. Power Sources, 77 [2] 183-97 (1999). https://doi.org/10.1016/S0378-7753(98)00193-1
  17. D. K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, and Y. Cui, "Spinel $LiMn_2O_4$ Nanorods as Lithium Ion Battery Cathodes," Nano Lett., 8 [11] 3948-52 (2008). https://doi.org/10.1021/nl8024328
  18. H.-W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, and D. K. Kim, "Ultrathin Spinel $LiMn_2O_4$ Nanowires as High Power Cathode Materials for Li-Ion Batteries," Nano Lett., 10 [10] 3852-56 (2010). https://doi.org/10.1021/nl101047f
  19. C. J. Curtis, J. Wang, and D. L. Schulz, "Preparation and Characterization of $LiMn_2O_4$ Spinel Nanoparticles as Cathode Materials in Secondary Li Batteries," J. Electrochem. Soc., 151 [4] A590-98 (2004). https://doi.org/10.1149/1.1648021
  20. S. Nieto, S. B. Majumder, and R. S. Katiyar, "Improvement of the Cycleability of Nano-crystalline Lithium Manganate Cathodes by Cation Co-doping," J. Power Sources, 136 [1] 88-98 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.020
  21. Y.-S. Han, J.-T. Son, H.-G. Kim, and H.-T. Jung, "Combustion Synthesis of $LiMn_2O_4$ with Citric Acid and the Effect of Postheat Treatment," J. Kor. Ceram. Soc., 38 [4] 301-7 (2001).
  22. N. Li, C. J. Patrissi, G. Che, and C. R. Martin, "Rate Capabilities of Nanostructured $LiMn_2O_4$ Electrodes in Aqueous Electrolyte," J. Electrochem. Soc., 147 [6] 2044-49 (2000). https://doi.org/10.1149/1.1393483
  23. J. Cabana, T. Valdes-Solis, M. R. Palacín, J. Oro-Sole, A. Fuertes, G. Marban, and A. B. Fuertes, "Enhanced High Rate Performance of $LiMn_2O_4$ Spinel Nanoparticles Synthesized by a Hardtemplate Route," J. Power Sources, 166 [2] 492-98 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.107
  24. M. Y. Song and M. Shon, "Variations of the Electrochemical Properties of $LiMn_2O_4$ with the Calcining Temperature," J. Kor. Ceram. Soc., 39 [6] 523-27 (2002). https://doi.org/10.4191/KCERS.2002.39.6.523
  25. M. J. Ji, E. K. Kim, Y. T. Ahn, and B. H. Choi, "Crystallinity and Battery Properties of Lithium Manganese Oxide Spinel with Lithium Titanium Oxide Spinel Coating Layer on Its Surface," J. Kor. Ceram. Soc., 47 [6] 633-37 (2010). https://doi.org/10.4191/KCERS.2010.47.6.633
  26. X. Wang and Y. Li, "Selected-Control Hydrothermal Synthesis of ${\alpha}-$ and ${\beta}-MnO_2$ Single Crystal Nanowires" J. Am. Chem. Soc., 124 [12] 2880-81 (2002). https://doi.org/10.1021/ja0177105
  27. H. Fang, L. Li, Y. Yang, G. Yan, and G. Li, "Low-temperature Synthesis of Highly Crystallized $LiMn_2O_4$ from Alpha Manganese Dioxide Nanorods," J. Power Sources, 184 [2] 494-97 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.011
  28. W. I. F. David, M. M. Thackeray, P. G. Bruce, and J. B. Goodenough, "Lithium Insertion into ${\beta}-MnO_2$ and the Rutilespinel Transformation," Mater. Res. Bull., 19 [1] 99-106 (1984). https://doi.org/10.1016/0025-5408(84)90015-1

Cited by

  1. Enhanced Structural and Electrochemical Properties of LiMn2O4 Nanocubes vol.46, pp.2, 2017, https://doi.org/10.1007/s11664-016-4741-9
  2. /3DG for lithium ion batteries vol.8, pp.2, 2018, https://doi.org/10.1039/C7RA12613A
  3. 다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구 vol.15, pp.3, 2012, https://doi.org/10.5229/jkes.2012.15.3.172
  4. Synergic effect of catalyst/binder in passivation side-products of Li-oxygen cells vol.23, pp.12, 2011, https://doi.org/10.1007/s10008-019-04417-z