DOI QR코드

DOI QR Code

Mechanical Behavior of Layered YSZ Thermal Barrier Coatings using Indentation Test

압입시험법에 의한 YSZ 층상 열차폐 코팅재의 기계적 거동

  • Lee, Dong-Heon (School of Mechanical Systems Engineering, Kookmin University) ;
  • Lee, Kee-Sung (School of Mechanical Systems Engineering, Kookmin University)
  • 이동헌 (국민대학교 기계시스템공학부 기계설계) ;
  • 이기성 (국민대학교 기계시스템공학부 기계설계)
  • Received : 2011.08.12
  • Accepted : 2011.09.14
  • Published : 2011.09.30

Abstract

In this study, we investigated the mechanical behaviors of layered thermal barrier coatings by indentations. Various single and double-layered thermal barrier coatings were deposited by air plasma spray process using different type of commercialized YSZ (Yttria stabilized zirconia) starting powders. Indentation stress-strain curve, load-displacement curve and hardness of the single and the double-layered thermal barrier coatings were obtained experimentally and analyzed. The indentation damages at the same loads were compared, and thus, the results depend on the structure of each coating. The result indicates improvement in damage resistances from tailoring of layered structures in the component of gas turbine system is expected.

Keywords

References

  1. N. P. Bansal and D. Zhu, "Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings," Mater. Sci. Eng. A., 459 192-95 (2007). https://doi.org/10.1016/j.msea.2007.01.069
  2. K. S. Lee, K. I. Jung, Y. S. Heo, T. W. Kim, Y. G. Jung, and U. Paik, "Thermal and Mechanical Properties of Sintered Bodies and EB-PVD Layers of $Y_2O_3$ Added $Gd_2Zr_2O_7$ Ceramics for Thermal Barrier Coatings," J. Alloy Compd., 507 448-55 (2010). https://doi.org/10.1016/j.jallcom.2010.07.196
  3. S. I. Jung, J. H. Kim, J. H. Lee, Y. G. Jung, U. Paik, and K. S. Lee, "Microstructure and Mechanical Properties of Zirconia-based Thermal Barrier Coatings with Starting Powder Morphology," Surf. Coat. Tech., 204 [1] 802-6 (2009). https://doi.org/10.1016/j.surfcoat.2009.09.070
  4. R. M. Leckie, S. Kramer, M. Ruhle, and C. G. Levi, "Thermochemical Compatibility between Alumina and $ZrO_2-GdO_{3/2}$ Thermal Barrier Coatings," Acta Mater., 53 3281-92 (2005). https://doi.org/10.1016/j.actamat.2005.03.035
  5. S. Y. Yoon, S. M. Lee, K. B. Shim, and H. T. Kim, "High Temperature Thermal Conductivities in $La_2Ce_2O_7-Gd_2Ce_2O_7-Y_2Ce_2O_7$ Pyrochlore System for Thermal Barrier Coatings," J. Kor Ceram. Soc., 44 [7] 387-92 (2007). https://doi.org/10.4191/KCERS.2007.44.7.387
  6. K. I. Jung, T. W. Kim, U. Paik, and K. S. Lee, "Mechanical Properties of Zirconia-Based Ceramic Materials for Thermal Barrier Coating," J. Kor. Ceram. Soc., 43 [8] 498-503 (2006). https://doi.org/10.4191/KCERS.2006.43.8.498
  7. K. H. Kwak, B. C. Shim, S. M. Lee, Y. S. Oh, H. T. Kim, B. K. Jang, and S. W. Kim, "Formation and Thermal Properties of Flurite-Pyrochlore Composite Structure in $La_2(Zr_xCe_{1-x})_2O_7$ Oxide System," Mater. Lett., 65 [19-20] 2937-40 (2011). https://doi.org/10.1016/j.matlet.2011.06.043
  8. A. G. Evans and J. W. Hutchinson, "The Mechanics of Coating Delamination in Thermal Gradients," Surf. Coat. Tech., 201 7905-16 (2007). https://doi.org/10.1016/j.surfcoat.2007.03.029
  9. C. Mercer, S. Faulhaber, A. G. Evans, and R. Darolia, "A Delamination Mechanism for Thermal Barrier Coatings Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Infilration," Acta Mater., 53 1029-39 (2005). https://doi.org/10.1016/j.actamat.2004.11.028
  10. S. H. Park, S. K. Kim, T. W. Kim, U. Paik, and K. S. Lee, "Indentation on YSZ Thermal Barrier Coating Layers Deposited by Electron Beam PVD," Phil. Mag., 86 [33-35] 5453-63 (2006). https://doi.org/10.1080/14786430600724488
  11. J. C. Jang and S. C. Choi, "Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide," J. Kor. Ceram. Soc., 43 [8] 479-85 (2006). https://doi.org/10.4191/KCERS.2006.43.8.479
  12. A. M. Limarga, T. L. Duong, G. Gregori, and D. R. Clarke, "High-Temperature Vibration Damping of Thermal Barrier Coating Materials," Surf. Coat. Tech., 202 [4-7] 693-97 (2007). https://doi.org/10.1016/j.surfcoat.2007.07.021
  13. M. Gell, L. Xie, X. Ma, E. H. Jordan, and N. P. Padture, "Highly Durable Thermal Barrier Coatings Made By the Solution Precursor Plasma Spray Process," Surf. Coat. Tech., 177-178 97-102 (2004). https://doi.org/10.1016/j.surfcoat.2003.06.023
  14. A. D. Jadhav and N. P. Padture, "Mechanical Properties of Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings," Surf. Coat. Tech., 202 4976-79 (2008). https://doi.org/10.1016/j.surfcoat.2008.04.091
  15. A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, "Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability," Mater. Sci. Eng. A., 497 239-53 (2008). https://doi.org/10.1016/j.msea.2008.07.058
  16. S. Y. Chun, "Microstructure and Mechanical Properties of Nanocrystalline TiN Films Through Increasing Substrate Bias," J. Kor. Ceram. Soc., 47 [6] 479-84 (2010). https://doi.org/10.4191/KCERS.2010.47.6.479
  17. D. Lee, T. W. Kim, and K. S. Lee, "Design of Thermal Barrier Coatings using Gadolinium Zirconate Ceramics : A Study on Gadolinium Zirconate/YSZ Bilayers," J. Ceram. Soc. Japan, 117 [5] 550-54 (2009). https://doi.org/10.2109/jcersj2.117.550
  18. Z. Xu, L. He, R. Mu, X. Zhong, Y. Zhang, J. Zhang, and X. Cao, "Double-Ceramic-Layer Thermal Barrier Coatings of $La_2Zr_2O_7/YSZ$ Deposited by Electron Beam-Physical Vapor Deposition," J. Alloy Compd., 478 168-72 (2009). https://doi.org/10.1016/j.jallcom.2008.11.073
  19. B. R. Lawn, "Indentation of Ceramics with Spheres : A Century after Hertz," J. Am. Ceram. Soc., 81 [8] 1977-94 (1998).
  20. S. W. Myoung, J. H. Kim, W. R. Lee, Y. G. Jung, K. S. Lee, and U. Paik, "Microstructure Design and Mechanical Properties of Thermal Barrier Coatings with Layered Top and Bond Coats," Surf. Coat. Tech., 205 1229-35 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.063
  21. X. Z. Hu and B. R. Lawn, "A Simple Indentation Stress-Strain Relation for Contacts with Spheres on Bilayer Structures," Thin Solid Films, 322 224-32 (1998).
  22. W. C. Oliver and G. M. Pharr, "An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments," J. Mater. Res., 7 1564-83 (1992). https://doi.org/10.1557/JMR.1992.1564

Cited by

  1. Mechanical Behavior of Glass/Porous Alumina by Contact Loading vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.399
  2. Fabrication and Characterization of Environmental Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying for Protection of Silicon Carbide Ceramics vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.481
  3. Effect of Porous Substrate on the Strength of Asymmetric Structure vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.417
  4. Preparation of Granule Powders for Thermal Spray Coating by Utilization of Pyrophyllite Minerals vol.53, pp.5, 2016, https://doi.org/10.4191/kcers.2016.53.5.557
  5. Evaluation of Thermal Durability of Thermal Barrier Coating and Change in Mechanical Behavior vol.54, pp.4, 2017, https://doi.org/10.4191/kcers.2017.54.4.05
  6. Thermal Shock Resistance of Bilayered YSZ Thermal Barrier Coating vol.55, pp.5, 2018, https://doi.org/10.4191/kcers.2018.55.5.04
  7. 분무건조 및 대기 플라즈마 용사에 의한 지르코니아 열차폐 코팅재의 제조 및 평가 vol.50, pp.5, 2011, https://doi.org/10.4191/kcers.2013.50.5.326
  8. 열충격에 의한 열차폐 코팅재의 기계적 거동 변화 vol.27, pp.1, 2017, https://doi.org/10.3740/mrsk.2017.27.1.25
  9. 탄소-탄소 복합재료의 하프늄 탄화물 코팅재의 열적/기계적 특성 vol.31, pp.5, 2011, https://doi.org/10.7234/composres.2018.31.5.260