DOI QR코드

DOI QR Code

Effect of High Energy Ball Milling on Sintering Behavior and Thermal Conductivity of Direct Nitrided AlN Powder

직접질화법 AlN 분말의 소결거동 및 열전도도에 미치는 고에너지 볼밀링 효과

  • Park, Hae-Ryong (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Young-Do (Division of Materials Science and Engineering, Hanyang University) ;
  • Ryu, Sung-Soo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
  • 박해룡 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김영도 (한양대학교 신소재공학부) ;
  • 류성수 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2011.08.20
  • Accepted : 2011.09.19
  • Published : 2011.09.30

Abstract

In this study, a high energy ball milling process was introduced in order to improve the densification of direct nitrided AlN powder. The sintering behavior and thermal conductivity of the AlN milled powder was investigated. The mixture of AlN powder and 5 wt% $Y_2O_3$ as a sintering additive was pulverized and dispersed by a bead mill with very small $ZrO_2$ bead media. The milled powders were sintered at $1700^{\circ}C-1800^{\circ}C$ for 4 h under $N_2$ atmosphere. The results showed that the sintered density was enhanced with increasing milling time due to the particle refinement as well as the increase in oxygen contents. Appropriate milling time was effective for the improvement of thermal conductivity, but the extensive millied powder formed more fractions of secondary phase during sintering, resulted in the decrease in thermal conductivity. The AlN powder milled for 10min after sintering at $1800^{\circ}C$ revealed the highest thermal conductivity, of 164W/$m{\cdot}K$ in tne densified AlN sintered at $1800^{\circ}C$.

Keywords

References

  1. W. Werdecker and F. Aldinger, "Aluminum Nitride-An Alternative Ceramic Substrate for High Power Applications in Microcircuits," IEEE Trans. Comp., Hybrids, Manuf. Technol., CHMT-7 [4] 399-404 (1984). https://doi.org/10.1109/TCHMT.1984.1136380
  2. Y. Kurokawa, Z. Utsumi, H. Takamizawa, T. Kamata, and S. Noguchi, "AlN Substrates with High Thermal Conductivity," IEEE Trans. Comp., Hybrids, Manuf. Technol., CHMT-8 [2] 247-52 (1985).
  3. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M Nakahashi, and T. Takahashi, "High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages," IEEE Trans. Comp., Hybrids, Manuf. Technol., 13 [2] 313-19 (1990). https://doi.org/10.1109/33.56163
  4. T. B. Jackson, A. V. Virkar K. L. More, R. B. Dinwiddie, Jr, and R. A. Cultler, "High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic, and Microstructural Factors," J. Am. Ceram. Soc., 80 [6] 1421-35 (1997).
  5. A. F. Belyanin, L. L. Bouilov, V. V. Zhirnov, A. I. Kamenev, K. A. Kovalskij, and B. V. Spitsyn, "Application of Aluminum Nitride Films for Electronic Devices," Diam. Relat. Mater., 8 [2-5] 369-72 (1999). https://doi.org/10.1016/S0925-9635(98)00412-9
  6. S. Kume, M. Yasuoka, N. Omura, and K. Watari, "Annealing Effect on Dielectric Property of AlN Ceramics," J. Eur. Ceram. Soc., 26 [10-11] 1831-34 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.009
  7. W. J. Kim, "Effect of Dopant Distribution on the Densification and Thermal Conductivity of Aluminum Nitride(in Korean)," pp.1-63, Ph. D. Dissertation, Korea Advanced Institute of Science and Technology, Daejon, 1994.
  8. C. Zweben, "Advances in Composite Materials for Thermal Management in Electronic Packaging," JOM, 50 [6] 47-51 (1998). https://doi.org/10.1007/s11837-998-0128-6
  9. H. Y. Zhang, D. Pinjala, and P. S. Teo, "Thermal Management of High Power Dissipation Electronic Packages: from Air Cooling to Liquid Cooling," Proc. Electron. Packag. Technol. Conf., 620-25 (2003).
  10. W. J. Lee, H. T. Kim, K. B. Shim, and S. M. Lee, "Effect of Sintering Conditions on the Electrical Conductivity of 1 wt% $Y_2O_3-Doped$ AlN Ceramics(in Korean)," J. Kor. Ceram. Soc., 44 [2] 116-23 (2007). https://doi.org/10.4191/KCERS.2007.44.2.116
  11. J. H. Chae, J. S. Park, J. P. Ahn, K. H. Kim, and B. H. Lee, "Effects of $Y_2O_3$ Addition on Densification and Thermal Conductivity of AlN Ceramics During Spark Plasma Sintering (in Korean),' J. Kor. Ceram. Soc., 45 [12] 827-31 (2008). https://doi.org/10.4191/KCERS.2008.45.1.827
  12. L. Qiao, H. Zhou, H. Xue, and S. Wang, "Effect of $Y_2O_3$ on Low Temperature Sintering and Thermal Conductivity of AlN Ceramics," J. Eur. Ceram. Soc., 23 [1] 61-7 (2003). https://doi.org/10.1016/S0955-2219(02)00079-1
  13. J. Y. Qiu, Y. Hotta, and K. Watari, "Enhancement of Densification and Thermal Conductivity in AlN Ceramics by Addition of Nano-Sized Particles," J. Am. Ceram. Soc., 89 [1] 377-80 (2006). https://doi.org/10.1111/j.1551-2916.2005.00692.x
  14. Y. Kameshima, M. Irie, A. Yasumori, and K. Okada, "Mechanochemical Effect on Low Temperature Synthesis of AlN by Direct Nitridation Method," Solid State Ionics, 172 [1-4] 185-90 (2004). https://doi.org/10.1016/j.ssi.2004.05.015
  15. M. Radwan, M. Bahgat, and A. A. El-Geassy, "Formation of Aluminum Nitride Whiskers by Direct Nitridation," J. Eur. Ceram. Soc., 26 [13] 2485-88 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.033
  16. R. Fu, H. Zhou, L. Chen, and Y. Wu, "Morphologies and Growth Mechanisms of Aluminum Nitride Whiskers Synthesized by Carbothermal Reduction," Mater. Sci. Eng., A266 [1-2] 44-51 (1999).
  17. I. Kimura, N. Hotta, H. Nukui, N Saito, and S. Yasukawa, "Synthesis of Fine AlN Powder by Vapour-phase Reaction," J. Mater. Sci. Letts., 7 [1] 66-8 (1988). https://doi.org/10.1007/BF01729918
  18. M. Tajika, W. Rafaniello, and K. Niihara, "Sintering Behavior of Direct Nitrided AlN Powder," Mater. Lett., 46 [2-3] 98-104 (2000). https://doi.org/10.1016/S0167-577X(00)00149-X
  19. J. Y. Qiu, Y. Hotta, K. Sato, and K. Watari, "Fabrication of Fine AlN Particles by Pulverizing with Very Small $ZrO_2$ Beads," J. Am. Ceram. Soc., 88 [6] 1676-79 (2005). https://doi.org/10.1111/j.1551-2916.2005.00327.x
  20. N. Hashimoto, H. Yoden, and S. Deki, "Sintering Behavior of Fine Aluminum Nitride Powder Synthesized from Aluminum Polynuclear Complex," J. Am. Ceram. Soc., 75 [8] 2098-106 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04471.x
  21. M. L. Panchula and J. Y. Ying, "Nanocrystalline Aluminum Nitride: II, Sintering and Properties," J. Am. Ceram. Soc., 86 [7] 1121-27 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03434.x
  22. C. Papelis, W. Um, C. E. Russell, and J. B. Chapman, "Measuring the Specific Surface Area of Natural and Manmade Glasses: Effects of Formation Process, Morphology, and Particle Size," Colloids Surf. A, 215 [1-3] 221-39 (2003). https://doi.org/10.1016/S0927-7757(02)00448-X
  23. T. Sakai and M. Iwata, "Effect of Oxygen on Sintering of AlN," J. Mater. Sci., 12 [8] 1659-65 (1977). https://doi.org/10.1007/BF00542817
  24. X. J. Luo, X. R. Xu, B. L. Zhang, W. L. Li, and H. R. Zhuang, "Characteristic and Dispersion of a treated AlN Powder in Aqueous Solvent," Mater. Sci. Eng., A368 [1-2] 126-30 (2004).
  25. R. M. German, "Powder Metallurgy and Particlate Materials Procseeing," pp. 72-75, Metal Powder Industries Federation, New Jersey, 2005.
  26. M. Medraj, Y. Baik, W. T. Thompson, and R. A. L. Drew, "Understanding AlN Sintering through Computational Thermodynamics Combined with Experimental Investigation," J. Mater. Process. Tech., 161 [3] 415-22 (2005). https://doi.org/10.1016/j.jmatprotec.2004.05.031
  27. J. Y. Qiu, Y. Hotta, K. Watari, K. Mitsuishi, and M. Yamazaki, "Low-Temperature Sintering Behavior of the Nano-sized AlN Powder Achieved by Super-fine Grinding Mill with $Y_2O_3$ and CaO Additives," J. Eur. Ceram. Soc., 26 [4-5] 385-90 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.016
  28. W. J. Kim, "Effect of Dopant Distribution on the Densification and Thermal Conductivity of Aluminum Nitride(in Korean)," pp.101, Ph. D. Dissertation, Korea Advanced Institute of Science and Technology, Taejon, 1994.
  29. K. Ishizaki and K. Watari, "Oxygen Behavior of Normal and HIP Sintered AlN," J. Phys. Chem. Solids, 50 [10] 1009-12 (1989). https://doi.org/10.1016/0022-3697(89)90501-5
  30. K. A. Khor, K. H. Cheng, L. G. Yu, and F. Boey, "Thermal Conductivity and Dielectric Constant of Spark Plasma Sintered Aluminum Nitride," Mater. Sci. Eng., A347 [1-2] 300-5 (2003).
  31. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vanderande, "The Intrinsic Thermal Conductivity of AlN," J. Phys. Chem. Solids, 48 [7] 641-47 (1987). https://doi.org/10.1016/0022-3697(87)90153-3
  32. F. Boey, A. I. Y. Tok, Y. C. Lam, and S. Y. Chew, "On the Effects of Secondary Phase on Thermal Conductivity of AlN Ceramic Substrates Using a Microstructural Modeling Approach," Mater. Sci. Eng., A335 [1-2] 281-89 (2002).
  33. J. Adachi, K. Kurosaki, M. Uno, and S. Yamanaka, "Thermal and Electrical Properties of Zirconium Nitride," J. Alloys Compd., 399 [1-2] 242-44 (2005). https://doi.org/10.1016/j.jallcom.2005.03.005

Cited by

  1. Densification and Microstructure of Ultrafine-sized AlN Powder Prepared by a High Energy Ball Milling Process vol.19, pp.1, 2012, https://doi.org/10.4150/KPMI.2012.19.1.025