DOI QR코드

DOI QR Code

Preparation of CdS-AC/TiO2 Composites Designed for a High Photonic Effect and their Photocatalytic Activity Under Visible Light

  • Park, Chong-Yeon (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Choi, Jong-Geun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Ghosh, Trisha (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2011.05.03
  • Accepted : 2011.08.19
  • Published : 2011.09.30

Abstract

In this study, CdS combined activated carbon/$TiO_2$ (CdS-AC/$TiO_2$) composites were prepared by a sol-gel method to improve the photocatalytic performance of $TiO_2$. These composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV-vis analysis. The photocatalytic activities were examined by the degradation of methylene blue (MB) under visible light irradiation. The photodegradation rate of MB under visible light irradiation reached 90.1% in 120 min. The kinetics of MB degradation was plotted alongside the values calculated from the Langmuir-Hinshelwood equation. The 0.2 CAT sample showed the best photocatalytic activity, which might be due to an increase in the photo-absorption effect by activated carbon and the cooperative effect of CdS.

Keywords

References

  1. M. Romero, J. Blanco, B. Sanchez, A. Vidal, S. Malato, A.I. Cardona, and E. Garcia, "Solar Photocatalytic Degradation of Water and Air Pollutants : Challenges and Perspectives," Solar Energy, 66 169 (1999). https://doi.org/10.1016/S0038-092X(98)00120-0
  2. W.C. Oh, M.L. Chen, and F.J Zhang, "Photocatalytic Degradation of Methylene Blue by CNT/ TiO2 Composites Prepared from MWCNT and Titanium(IV) Isopropoxide in Tetrahydrofuran," J. Photocatal. Sci., 1 [2] 19-28 (2010).
  3. W.C. Oh, "Review of Carbon Based Titania Photocatalysts," J. Photocatal. Sci., 1 [2] 29-34 (2010).
  4. L. Zhu, Z.D. Meng, M. L..Chen, F.J. Zhang, J.G.Choi, J.Y. Park, and W.C. Oh, "Photodegradation of MB Solution by the Metal (Fe, Ni and Co) Containing $AC/TiO_2$ Photocatalyst under the UV Irradiation," Phys J. Photocatal. Sci., 1 [2] 69-76 (2010).
  5. W.C. Oh and F.J Zhang "A Review-Antibacterial Activity of CNT/ $TiO_2$, Ag-CNT/ $TiO_2$, and C60/ $TiO_2$," J. Photocatal. Sci., 1 [2] 63-67 (2010).
  6. D. Chatterjee and A. Mahata, "Visible Light Induced Photodegradation of Organic Pollutantson Dye Adsorbed $TiO_2$ Surface," J. Photochem. Photobiol., A153 199 (2002).
  7. Y. M. Cho and W. Y. Choi, "Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized $TiO_2$," Environ. Sci. Technol., 35 966 (2001). https://doi.org/10.1021/es001245e
  8. H. L. Su, Y. Xie, P. Gao, Y. J. Xiong, and Y. T. Qian, "Synthesis of $MS/TiO_2$(M = Pb, Zn, Cd) Nanocomposites Through a Mild Sol-gel Process," Mater. Chem., 11 684 (2001). https://doi.org/10.1039/b004392n
  9. K. H. Yoon, J. Cho, and D. H. Kang, "Physical and Photoelectrochemical Properties of the $TiO_2-ZnO$ System," Mater. Res. Bull., 34 1451 (1999). https://doi.org/10.1016/S0025-5408(99)00138-5
  10. V. Stengl, S. Bakardjieva, N. Murafa, V. Hou kova, and K. Lang, "Visible-light Photocatalytic Activity of $TiO_2/ZnS$ Nanocomposites Prepared by Homogeneous Hydrolysis," Micropor. Mesopor. Mater., 110 370 (2008). https://doi.org/10.1016/j.micromeso.2007.06.052
  11. W. W. So, K. J. Kim, and S. J. Moon, "Photo-production of Hydrogen Over the $CdS-TiO_2$ Nano-composite Particulate $^{\ast}Lms$ Treated with TiCl4," Int. J. Hydrogen Energy, 29 229 (2004). https://doi.org/10.1016/S0360-3199(03)00211-8
  12. Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, and J.V. Weber, J. "UV-vis Versus Visible Degradation of Acid Orange II in a Coupled $CdS/TiO_2$ Semiconductors Suspension," Photochem. Photobiol., A183 218 (2006).
  13. K. Demeestere, J. Dewulf, T. Ohno, P. H. Salgado, and H. V. Langenhove, "Visible Light Mediated Photocatalytic Degradation of Gaseous Trichloroethylene and Dimethyl Sulfide on Modified Titanium Dioxide," Appl. Catal. B: Environ., 61 140 (2005). https://doi.org/10.1016/j.apcatb.2005.04.017
  14. J.C. Tristao, F. Magalhaes, P. Corio, M.T.C. Sansiviero, "Electronic Characterization and Photocatalytic Properties of $CdS/TiO_2$ Semiconductor Composite," J. Photochem. Photobiol., A, 181 152 (2006). https://doi.org/10.1016/j.jphotochem.2005.11.018
  15. L. Wu, J. C. Yu, and X. Z. Fu, "Characterization and Photocatalytic Mechanism of Nanosized CdS Coupled $TiO_2$ Nanocrystals under Visible Light Irradiation," J. Mol. Catal. A: Chem., 244 25 (2006). https://doi.org/10.1016/j.molcata.2005.08.047
  16. Z. Ding, X. J. Hu, P. L. Yue, G. Q. Lua, and P. F. Greenfield, "Synthesis of Anatase $TiO_2$ Supported on Porous Solids by Chemical Vapor Deposition," Catal. Today, 68 173 (2001). https://doi.org/10.1016/S0920-5861(01)00298-X
  17. Y. M. Xu, W. Zheng, and W. P. Liu, "Enhanced pHotocatalytic Activity of Supported $TiO_2$ : Dispersing Effect of $SiO_2$," J. Photochem. Photobiol. A: Chem., 122 57 (1999). https://doi.org/10.1016/S1010-6030(98)00470-5
  18. A. Bhattacharyya, S. Kawi, and M. B. Ray, "Photocatalytic Degradation of Orange II by $TiO_2$ Catalysts Supported on Adsorbents," Catal. Today, 98 431 (2004). https://doi.org/10.1016/j.cattod.2004.08.010
  19. P. Dwivedi, V. Gaur, A. Sharma, and N. Verma, "Comparative Study of Removal of Volatile Organic Compounds by Cryogenic Condensation and Adsorption by Activated Carbon Fiber," Sep. Purif. Technol., 39 23 (2004). https://doi.org/10.1016/j.seppur.2003.12.016
  20. T. Guo, Z. P. Bai, C. Wu, and T. Zhu, "Influence of Relative Humidity on the Photocatalytic oxidation (PCO) of Toluene by $TiO_2$ Loaded on Activated Carbon Fibers: PCO Rate and Intermediates Accumulation," Appl. Catal. B: Environ., 79 171 (2008). https://doi.org/10.1016/j.apcatb.2007.09.033
  21. R. S. Yuan, J. T. Zheng, R. B. Guan, and Y. C. Zhao, "Surface Characteristics and Photocatalytic Activity of $TiO_2$ Loaded on Activated Carbon Fibers," Colloids Surf. A, 254 131 (2005). https://doi.org/10.1016/j.colsurfa.2004.11.027
  22. J. H. Liu, R. Yang, and S. M. Li, "Preparation and Application of Efficient $TiO_2$ /ACFs Photocatalyst," J. Environ. Sci., 18 979 (2006). https://doi.org/10.1016/S1001-0742(06)60025-9
  23. H. Yamashita, M. Harada, A. Tanii, and M. Honda, "Preparation of Efficient Titanium Oxide Photocatalysts by an Ionized Cluster Beam (ICB) Method and their Photocatalytic Reactivities for the Purification of Water," Catal. Today, 63 63 (2000). https://doi.org/10.1016/S0920-5861(00)00446-6
  24. K. R. Zhu, M. S. Zhang, J. M. Hong, and Z. Yin, "Size Effect on Phase Transition Sequence of $TiO_2$ Nanocrystal," Mater. Sci. Eng. A: Struct., 403 87 (2005). https://doi.org/10.1016/j.msea.2005.04.029
  25. R. S. Yuan, R. B. Guan, and J. T. Zheng, "Effect of the Pore Size of $TiO_2-loaded$ Activated Carbon Fiber on its Photocatalytic Activity," Scripta Mater., 52 1329 (2005). https://doi.org/10.1016/j.scriptamat.2005.02.028
  26. Y. Zhang, J. C. Crittenden, D. W. Hand, and D. L. Perram, "Fixed-bed Photocatalysts for Solar Decontamination of Water," Environ. Sci. Technol., 28 435 (1994). https://doi.org/10.1021/es00052a015
  27. A. H. El-Sheikh, A. P. Newman, H. Al-Daffaee, S. Phull, N. Cresswell, and S. York, "Deposition of Anatase on the Surface of Activated Carbon," Surf. Coat. Technol., 187 284 (2004). https://doi.org/10.1016/j.surfcoat.2004.03.012
  28. J. Arana, E. Tello Rendon, J.M. Dona Rodriguez, C. Garriga i Cabo, O. Gonzalez Diaz, J.A. Herrera Melian, and J. Perez Pena. "$TiO_2$ Activation by Using Activated Carbon as a Support Part I. Surface Characterisation and Decantability Study,"Appl. Catal. B Environ., 44 161 (2003). https://doi.org/10.1016/S0926-3373(03)00107-3