DOI QR코드

DOI QR Code

Electrochemical Corrosion Properties of YSZ Coated AA1050 Aluminium Alloys Prepared by Aerosol Deposition

에어로졸 증착법에 의한 YSZ 코팅된 AA1050 알루미늄 합금의 전기화학적 부식 특성

  • Ryu, Hyun-Sam (WCU Hybrid Materials Program, Department of Materials Science and Engineering and Center for Iron and Steel Research, Seoul National University) ;
  • Lim, Tae-Seop (WCU Hybrid Materials Program, Department of Materials Science and Engineering and Center for Iron and Steel Research, Seoul National University) ;
  • Ryu, Jung-Ho (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Park, Dong-Soo (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Hong, Seong-Hyeon (WCU Hybrid Materials Program, Department of Materials Science and Engineering and Center for Iron and Steel Research, Seoul National University)
  • 유현삼 (서울대학교 재료공학부) ;
  • 임태섭 (서울대학교 재료공학부) ;
  • 류정호 (재료연구소 기능세라믹연구그룹) ;
  • 박동수 (재료연구소 기능세라믹연구그룹) ;
  • 홍성현 (서울대학교 재료공학부)
  • Received : 2011.07.25
  • Accepted : 2011.08.16
  • Published : 2011.09.30

Abstract

Yttria stabilized zirconia (YSZ) coating was formed on AA1050 Al alloys by aerosol deposition (AD), and its electrochemical corrosion properties were investigated in 3.5 wt% NaCl and 0.5M $H_2SO_4$ solutions. The crack-free, dense, and ~5 ${\mu}m$ thick YSZ coating was successfully obtained by AD. The as-deposited coating was composed of cubic-YSZ nanocrystallites of ~10 nm size. The potentiodynamic test indicated that the YSZ coated Al alloy had much lower corrosion current densities (2 nA/$cm^2$) by comparison to uncoated sample and exhibited a passive behavior in anodic branch. Particularly, a pitting breakdown potential could not be identified in $H_2SO_4$. EIS tests revealed that the impedance of YSZ coated sample was ${\sim}10^6{\Omega}cm^2$ in NaCl and ${\sim}10^7{\Omega}cm^2$ in $H_2SO_4$, which was about 3 or 4 orders of magnitude higher than that of uncoated sample. Consequently, the corrosion resistance of Al alloy had been significantly enhanced by the YSZ coating.

Keywords

References

  1. C. Vargel, "Corrosion of Aluminium," pp. 9-16, 88-109, and 149-62, Elsevier Science, San Diego, 2004.
  2. M. Pourbaix, "Atlas of Electrochemical Equilibria in Aqueous Solution," pp. 168-76, 2nd English ed. National Association of Corrosion Engineers, Houston, 1974.
  3. J. R. Davis, "Corrosion of Aluminium and Aluminium Alloys," pp. 25-67, ASM International, Materials Park, OH, 1999.
  4. R. L. Twite and G. P. Bierwagen, "Review of Alternatives to Chromate for Corrosion Protection of Aluminium Aerospace Alloys," Prog. Org. Coat., 33 91-100 (1998). https://doi.org/10.1016/S0300-9440(98)00015-0
  5. J. Zhao, R. L. McCreery, and G. Frankel, "Corrosion Protection of Untreated AA-2024-T3 in Chloride Solution by a Chromate Conversion Coating Monitored with Raman Spectroscopy," J. Electrochem. Soc., 145 2258-64 (1998). https://doi.org/10.1149/1.1838630
  6. N. B. Dahotre, P. Kadolkar, and S. Shah, "Refractory Ceramic Coatings: Processes, Systems and Wettability/Adhesion," Surf. Interface Anal., 31 659-72 (2001). https://doi.org/10.1002/sia.1092
  7. H. S. Ryu, J. Ryu, D.-S. Park, and S.-H. Hong, "Electrochemical Corrosion Properties of Nanostructured YSZ Coated AZ31 Magnesium Alloy Prepared by Aerosol-Deposition," J. Electrochem. Soc., 158 C23-28 (2011). https://doi.org/10.1149/1.3525271
  8. F. Andreatta, P. Aldighieri, L. Paussa, R. Di Maggio, S. Rossi, and L. Fedrizzi, "Electrochemical Behavior of $Zr_O2$ Sol-Gel Pre-treatments on AA6060 Aluminium Alloy," J. Elctrochim. Acta., 52 7545-55 (2007). https://doi.org/10.1016/j.electacta.2006.12.065
  9. G. Gusmano, G. Montesperelli, M. Rapone, G. Padeletti, A. Cusm, S. Kaciulis, A. Mezzi, and R. Di Maggio, "Zirconia Primers for Corrosion Resistant Coatings," Surf. Coat. Technol., 201 5822-28 (2007). https://doi.org/10.1016/j.surfcoat.2006.10.036
  10. H. Chen, Y. Zhang, and C. Ding, "Tribological Properties of Nanostructured Zirconia Coatings Deposited by Plasma Spraying," Wear, 253 885-93 (2002). https://doi.org/10.1016/S0043-1648(02)00221-1
  11. X. F. Yang, D. E. Tallman, V. J. Gelling, G. P. Bierwagen, L. S. Kasten, and J. Berg, " Use of Sol-Gel Conversion coating for Aluminum Corrosion Protection," Surf. Coat. Technol., 140 44-50 (2001). https://doi.org/10.1016/S0257-8972(01)01002-7
  12. M. L. Zheludkevich, R. Serra, M. F. Montemor, K. A. Yasakau, I. M. Miranda Salvado, and M. G. S. Ferreira, "Nanostructure Sol-Gel Coatings Doped with Cerium Nitrate as Pre-treatments for AA2024-T3 Corrosion Protection Performance," Electrochim. Acta, 51 208-17 (2005). https://doi.org/10.1016/j.electacta.2005.04.021
  13. O. Zubillaga, F. J. Cano, I. Azkarate, I. S. Molchan, G. E. Thompson, and P. Skeldon, "Anodic Films Containing Polyaniline and Nanoparticles for Corrosion Protection of AA2024T3 Aluminium Alloy," Surf. Coat. Technol., 203 1494-501 (2009). https://doi.org/10.1016/j.surfcoat.2008.11.023
  14. ZJ. Akedo, "Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices," J. Therm. Spray Technol., 17 181-98 (2008). https://doi.org/10.1007/s11666-008-9163-7
  15. J. Akedo, "Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layer," J. Am. Ceram. Soc., 89 1834-39 (2006). https://doi.org/10.1111/j.1551-2916.2006.01030.x
  16. J. Akedo and M. Levedev, "Microstructure and Electrical Properties of Lead Zirconate Titanate $(Pb(Zr_{52}/Ti_{48})O_3)$ Thick Films Deposited by Aerosol Deposition Method," Jpn. J. Appl. Phys., 38 5397-401 (1999). https://doi.org/10.1143/JJAP.38.5397
  17. M. Lebedev, J. Akedo, and T. Ito, "Substrate Heating Effects on Hardness of an $a-Al_2O_3$ Thick Film Formed by Aerosol- Deposition Method," J. Cryst. Growth, 275 e1301-e1306 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.109
  18. J. Ryu, D.-S. Park, B.-D. Hahn, J.-J. Choi, W.-H. Yoon, K.-Y. Kim, and H.-S. Yun, "Photocatalytic $TiO_2$ Thin Films by Aerosol-Deposition: From Micron-sized Particles to Nanograined Thin Film at Room Temperature," Appl. Catal., B, 83 1-7 (2008). https://doi.org/10.1016/j.apcatb.2008.01.020
  19. B.-D. Hahn, J.-M. Lee, D.-S. Park, J.-J. Choi, J. Ryu, W.-H. Yoon, B.-K. Lee, D.-S. Shin, and H.-E. Kim, "Mechanical and in Vitro Biological Performances of Hydroxyapatitecarbon Nanotube Composite Coatings Deposited on Ti by Aerosol Deposition," Acta Biomat., 5 3205-14 (2009). https://doi.org/10.1016/j.actbio.2009.05.005
  20. B.-D. Hahn, D.-S. Park, J.-J. Choi, J. Ryu, W.-H Yoon, K.-H. Kim, C. Park, and H.-E. Kim, "Dense Nanostructured Hydroxyapatite Coating on Titanium by Aerosol Deposition," J. Am. Ceram. Soc., 92, 683-87 (2009). https://doi.org/10.1111/j.1551-2916.2008.02876.x
  21. M. Trueba and S. P. Trasatti, "Study of Al Alloy Corrosion in Neutral NaCl by the Pitting Scan Technique," Mater. Chem. and Phys., 121 523-33 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.022
  22. J. Liang, P. Bala Srinivasan, C. Blawert, and W. Dietzel, "Comparison of Electrochemical Corrosion Behaviour of MgO and $ZrO_2$ Coatings on AM50 Magnesium Alloy Formed by Plasma Electrolytic Oxidation," Corros. Sci., 51 2483-92 (2009). https://doi.org/10.1016/j.corsci.2009.06.034
  23. Y. Zhang, C. Yan, F. Wang, and W. Li, "Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution," Corros. Sci., 47 2816-31 (2005). https://doi.org/10.1016/j.corsci.2005.01.010
  24. X.-H. Zhao, Y. Zuo, J.-P. Xiong, and Y.-M. Tang, "A Study on the Self-sealing Process of Anodic Films on Aluminum by EIS," Surf. Coat. Technol., 200 6846-53 (2006). https://doi.org/10.1016/j.surfcoat.2005.10.031
  25. T. Aerts, J.-B. Jorcin, I. De Graeve, and H. Terryn, "Comparison between the Influence of Applied Electrode and Electrolyte Temperatures on Porous Anodizing of Aluminium," Electrochim. Acta, 55 3957-65 (2010). https://doi.org/10.1016/j.electacta.2010.02.044
  26. S. V. Lamaka, M. F. Montemor, A. F. Galio, M. L. Zheludkevich, C. Trindade, L. F. Dick, and M. G. S. Ferreira, "Novel Hybrid Sol-Gel Coatings for Corrosion Protection of AZ31B Magnesium Alloy," Electrochim. Acta, 53 4773-83 (2008). https://doi.org/10.1016/j.electacta.2008.02.015
  27. M. Zaharescu, L. Predoana, A. Barau, D. Raps, F. Gammel, N. C. Rosero-Navarro, Y. Castro, A. Durn, and M. Aparicio, "$SiO_2$ Based Hybrid Inorganic-organic Films Doped with $TiO_2-CeO_2$ Nanoparticles for Corrosion Protection of AA2024 and Mg-AZ31B Alloys," Corros. Sci., 51 1998-2005 (2009).
  28. J.-B. Jorcin, M. E. Orazem, N. Pbre, and B. Tribollet, "CPE Analysis by Local Electrochemical Impedance Spectroscopy," Electrochim. Acta., 51 1473-79 (2006). https://doi.org/10.1016/j.electacta.2005.02.128
  29. P. Zoltowski, "On the Electrical Capacitance of Interfaces Revealing Constant Phase Element Behaviour," J. Electroanal. Chem., 443 149-54 (1998). https://doi.org/10.1016/S0022-0728(97)00490-7

Cited by

  1. Corrosion Protection Performance of YSZ Coating on AA7075 Aluminum Alloy Prepared by Aerosol Deposition vol.160, pp.1, 2013, https://doi.org/10.1149/2.038302jes