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Abstract. In this paper we define the notions of left ∗-bimultiplier, ∗-bimultiplier

and generalized ∗-biderivation, and to prove that if a semiprime ∗-ring admits a left ∗-
bimultiplier M , then M maps R×R into Z(R). In Section 3, we discuss the applications

of theory of ∗-bimultipliers. Further, it was shown that if a semiprime ∗-ring R admits a

symmetric generalized ∗-biderivation G : R×R → R with an associated nonzero symmet-

ric ∗-biderivation B : R × R → R, then G maps R × R into Z(R). As an application, we

establish corresponding results in the setting of C∗-algebra.

1. Introduction

Throughout the discussion, unless otherwise mentioned, R will denote an as-
sociative ring with center Z(R), and A will represent a C∗-algebra. However, A
may not have unity with center Z(A). For any x, y ∈ A, the symbol [x, y](resp.
x ◦ y) will denote the commutator xy − yx (resp. the anti-commutator xy + yx).
Recall that an algebra A is prime if xAy = {0} implies x = 0 or y = 0, and A is
semiprime if xAx = {0} implies x = 0. A Banach algebra is a linear associative
algebra which, as a vector space, is a Banach space with norm ∥ · ∥ satisfying the
multiplicative inequality; ∥xy∥ ≤ ∥x∥∥y∥ for all x and y in A. An additive mapping
x 7−→ x∗ of A into itself is called an involution if the following conditions are satis-
fied: (i) (xy)∗ = y∗x∗, (ii) (x∗)∗ = x, and (iii) (λx)∗ = λ̄x∗ for all x, y ∈ A and
λ ∈ C, where λ̄ is the conjugate of λ . An algebra(ring) equipped with an involution
is called a ∗-algebra(∗-ring) or algebra with involution(ring with involution). A C∗-
algebra A is a Banach ∗-algebra with the additional norm condition ∥x∗x∥ = ∥x∥2
for all x ∈ A.

Let S be a nonempty subset of R. A function f : R → R is said to be centralizing
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on S if [f(x), x] ∈ Z(R) for all x ∈ S. In the special case when [f(x), x] = 0 for all
x ∈ S, f is said to be commuting on S. The study of such mappings were initiated
by Posner. In [14, Lemma 3], Posner proved that if a prime ring R has a nonzero
commuting derivation, then R is commutative. Over the last five decades, many
authors [4, 6, 7] have proved commutativity theorems for prime and semiprime
rings admitting various types of additive maps like automorphisms, derivations,
biderivations and generalized derivations which are centralizing or commuting on
certain appropriate subsets of R.

The purpose of this paper is to prove some theorems on prime(semiprime) ∗-
rings, which have independent interests and related to symmetric ∗-biadditive map-
pings. Moreover, in the last section we discuss the applications of the theory of
∗-bimultipliers. Finally, we establish corresponding results in the setting of C∗-
algebra.

An additive mapping d : R −→ R is called a derivation (resp. reverse derivation)
if d(xy) = d(x)y + xd(y) (resp. d(xy) = d(y)x + yd(x)) holds for all x, y ∈ R.
Following [15], an additive mapping T : R −→ R is called a left (resp. right)
centralizer if T (xy) = T (x)y (resp. T (xy) = xT (y)) holds for all x, y ∈ R. An
additive mapping F : R −→ R is called a generalized derivation (resp. generalized
reverse derivation) if there exists a derivation (resp. reverse derivation) d : R −→ R
such that F (xy) = F (x)y + xd(y) (resp. F (xy) = F (y)x + yd(x)) holds for all
x, y ∈ R. A mapping B : R×R −→ R is said to be symmetric if B(x, y) = B(y, x)
holds for all x, y ∈ R. In [12] Muthana defined the following notions: a biadditive
(i.e., additive in both arguments) mapping B : R × R −→ R is called a left (resp.
right) bimultiplier if B(xy, z) = B(x, z)y (resp. B(xy, z) = xB(y, z)) holds for all
x, y, z ∈ R. A symmetric biadditive mapping B : R×R −→ R is called a symmetric
biderivation if B(xy, z) = B(x, z)y + xB(y, z) is fulfilled for all x, y, z ∈ R. The
concept of a symmetric biderivation was introduced by Maksa in [10] (see also [11]
where an example can be found).

Let R be a ∗-ring. Following [1, 3], an additive mapping d : R −→ R is
called a ∗-derivation (resp. reverse ∗-derivation) if d(xy) = d(x)y∗ + xd(y) (resp.
d(xy) = d(y)x∗+ yd(x)) holds for all x, y ∈ R. An additive mapping T : R −→ R is
said to be a left (resp. right) ∗-centralizer if T (xy) = T (x)y∗ (resp. T (xy) = x∗T (y))
holds for all x, y ∈ R. A symmetric biadditive mapping B : R×R −→ R is called a
symmetric ∗-biderivation if B(xy, z) = B(x, z)y∗+xB(y, z) holds for all x, y, z ∈ R,
and B is called a symmetric reverse ∗-biderivation if B(xy, z) = B(y, z)x∗+yB(x, z)
holds for all x, y, z ∈ R. An additive mapping F : R −→ R is called a generalized
∗-derivation (resp. generalized reverse ∗-derivation) if there exists a ∗-derivation
(resp. reverse ∗-derivation) d : R −→ R such that F (xy) = F (x)y∗ + xd(y) (resp.
F (xy) = F (y)x∗ + yd(x)) holds for all x, y ∈ R. In [5], Bresar and Vukman proved
that if a prime ∗-ring R admits a ∗-derivation (resp. reverse ∗-derivation) d, then
either d = 0 or R is commutative. Further, the first author together with Ashraf [3]
extended the above mentioned result for semiprime ∗-rings. Very recently, the first
author in [1] established that if a semiprime ∗-ring admits a generalized ∗-derivation
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(resp. generalized reverse ∗-derivation) F, then F maps R into Z(R).
Now we introduce the concept of ∗-bimultiplier and generalized ∗-biderivation

as follows: A symmetric biadditive mapping M : R × R −→ R is said to be a
symmetric left ∗-bimultiplier (resp. symmetric right ∗-bimultiplier) if M(xy, z) =
M(x, z)y∗ (resp. M(xy, z) = x∗M(y, z)) holds for all x, y, z ∈ R. If M is both
symmetric left as well as right ∗-bimultiplier, then M is a symmetric ∗-bimultiplier.
A symmetric biadditive mapping G : R×R −→ R is called a symmetric generalized
∗-biderivation if there exists a symmetric ∗-biderivation B : R×R −→ R such that
G(xy, z) = G(x, z)y∗ + xB(y, z) holds for all x, y, z ∈ R. A symmetric biadditive
mapping G : R × R −→ R is called a symmetric generalized reverse ∗-biderivation
if there exists a symmetric reverse ∗-biderivation B : R × R −→ R such that
G(xy, z) = G(y, z)x∗ + yB(x, z) holds for all x, y, z ∈ R. Of course the relation
G(z, xy) = G(z, y)x∗ + yB(x, z) is fulfilled for all x, y, z ∈ R. Hence, the concept
of symmetric generalized ∗-biderivations covers both the concepts of symmetric ∗-
biderivations and symmetric left ∗-bimultipliers. Note that if R is a ∗-ring, and B
is any symmetric ∗-biderivation of R. Consider the symmetric biadditive function
f : R×R → R such that

f(xy, z) = f(x, z)y∗ and f(x, yz) = f(x, y)z∗ for all x, y, z ∈ R.

Then, f +B is a symmetric generalized ∗-biderivation on R. Moreover, if B is any
symmetric reverse ∗-biderivation of R, and g : R×R → R is a symmetric biadditive
function such that

g(xy, z) = g(y, z)x∗ and g(x, yz) = g(x, z)y∗ for all x, y, z ∈ R.

Then, g +B is a symmetric generalized reverse ∗-biderivation on R.

2. Left (resp. right) ∗-bimultipliers

The main goal of this section is to prove the following theorem related to left
∗-bimultipliers. More precisely, we shall prove the following result:

Theorem 2.1. Let R be a semiprime ∗-ring. If M : R × R → R is a biadditive
mapping such that M(xy, z) = M(x, z)y∗ for all x, y, z ∈ R, then M maps R × R
into Z(R).

Proof. By the hypothesis, we have

(2.1) M(xy, z) = M(x, z)y∗ for all x, y, z ∈ R.

Replacing y by yw in (2.1), one hand we obtain

(2.2) M(xyw, z) = M(x(yw), z) = M(x, z)w∗y∗ for all w, x, y, z ∈ R.

On the other hand, we have

(2.3) M(xyw, z) = M((xy)w, z) = M(x, z)y∗w∗ for all w, x, y, z ∈ R.
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Subtracting (2.2) from (2.3), we obtain

(2.4) M(x, z)[y∗, w∗] = 0 for all w, x, y, z ∈ R.

Substituting y∗ for y and w∗ for w in (2.4), we arrive at

(2.5) M(x, z)[y, w] = 0 for all w, x, y, z ∈ R.

Replacing y by yM(x, z) in the above expression we find that

M(x, z)[y, w]M(x, z) +M(x, z)y[M(x, z), w] = 0 for all w, x, y, z ∈ R.

Application of relation (2.5) forces that

(2.6) M(x, z)y[M(x, z), w] = 0 for all w, x, y, z ∈ R.

Multiplying by w to (2.6) from left yields that

(2.7) wM(x, z)y[M(x, z), w] = 0 for all w, x, y, z ∈ R.

Now putting wy for y in (2.6), we get

(2.8) M(x, z)wy[M(x, z), w] = 0 for all w, x, y, z ∈ R.

Combining (2.7) with (2.8) we arrive at

(2.9) [M(x, z), w]y[M(x, z), w] = 0 for all w, x, y, z ∈ R.

This implies that [M(x, z), w]R[M(x, z), w] = {0} for all w, x, z ∈ R. Thus, we
obtain, [M(x, z), w] = 0 for all w, x, z ∈ R by the semiprimeness of R. Hence, M
maps R×R into Z(R). This completes the proof of our first theorem. 2

We now prove another theorem in this vein.

Theorem 2.2. Let R be a semiprime ∗-ring. If M : R × R → R is a biadditive
mapping such that M(xy, z) = x∗M(y, z) for all x, y, z ∈ R, then M maps R × R
into Z(R).

Proof. We compute M(xyw, z) in two different ways. Then, we have

(2.10) M(x(yw), z) = x∗y∗M(w, z) for all w, x, y, z ∈ R

and

(2.11) M((xy)w, z) = y∗x∗M(w, z) for all w, x, y, z ∈ R.

Comparing the expressions so obtained for M(xyw, z), we arrive at

(2.12) [x∗, y∗]M(w, z) = 0 for all w, x, y, z ∈ R.
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Henceforth, using similar approach as we have used after (2.4) in the proof of the last
paragraph of Theorem 2.1 with necessary variations, we find that [M(w, z), y] = 0
for all w, y, z ∈ R. Hence, M maps R×R into Z(R). 2

Corollary 2.1. Let R be a semisimple ∗-ring. If M : R × R → R is
a biadditive mapping such that M(xy, z) = M(x, z)y∗ for all x, y, z ∈ R or
M(xy, z) = x∗M(y, z) for all x, y, z ∈ R, then M maps R×R into Z(R).

Proof. As a consequence of Theorems 2.1 & 2.2, and of the fact that every semisim-
ple ∗-ring is semiprime ∗-ring. 2

It is to remark that every C∗-algebra is semiprime ring (see [2] for further
details), and therefore satisfies the requirements of Theorems 2.1 & 2.2. Hence, we
have the following:

Theorem 2.3. Let A be a C∗ -algebra. If M : A × A → A is a bilinear mapping
such that M(xy, z) = M(x, z)y∗ for all x, y, z ∈ A or M(xy, z) = x∗M(y, z) for all
x, y, z ∈ A, then M maps A×A into Z(A).

Next, let us consider the prime versions of Theorem 2.1 and Theorem 2.2.

Theorem 2.4. Let R be a prime ∗-ring. If M : R×R → R is a nonzero biadditive
mapping such that M(xy, z) = M(x, z)y∗ for all x, y, z ∈ R, then R is commutative.

Proof. In view of Theorem 2.1, we have M(x, z)[y, w] = 0 for all w, x, y, z ∈ R.
Substituting yx for y, we find that M(x, z)y[x,w] = 0 for all w, x, y, z ∈ R, and
hence M(x, z)R[x,w] = {0} for all w, x, z ∈ R. Thus, the primeness of R forces
that for each x ∈ R either [x,w] = 0 or M(x, z) = 0 for all w, z ∈ R. The set of all
x ∈ R for which these two properties hold are additive subgroups of R whose union
is R. But a group can not be the set-theoretic union of two of its proper subgroups,
therefore M(x, z) = 0 for all x, z ∈ R or [x,w] = 0 for all w, x ∈ R. But M(x, z) ̸= 0,
we conclude that [x,w] = 0 for all w, x ∈ R and hence R is commutative. 2

Similarly, we can prove the following:

Theorem 2.5. Let R be a prime ∗-ring. If M : R×R → R is a nonzero biadditive
mapping such that M(xy, z) = x∗M(y, z) for all x, y, z ∈ R, then R is commutative.

3. Generalized ∗-biderivations

In this section, we present some applications of theory of ∗-bimultipliers in ∗-
rings. If G : R × R −→ R is a symmetric generalized ∗-biderivation of R related
to a symmetric ∗-biderivation B : R × R −→ R, then it is easy to see that G is a
symmetric generalized ∗-biderivation of R if and only if G is of the form G = B+M,
where B is a symmetric ∗-biderivation and M is a symmetric left ∗-bimultiplier of
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R. Hence, we write M = G − B. In the proof of Theorem 3.1 below, we use this
technique which can be regarded as a contribution to the theory of ∗-bimultipliers
in ∗-rings. In fact, we prove the following result:

Theorem 3.1. Let R be a semiprime ∗-ring. If R admits a symmetric generalized
∗-biderivation G : R×R → R with an associated nonzero symmetric ∗-biderivation
B : R×R → R, then G maps R×R into Z(R).

Proof. Let us give the proof of this theorem in the following two steps:
Step 1. We assume that G is a symmetric generalized ∗-biderivation with an asso-
ciated symmetric ∗-biderivation B. If B = 0, then G is a left ∗-bimultiplier on R.
Thus in view of Theorem 2.1, we get the required result.

Step 2. On the other hand, suppose that the associated ∗-biderivation B ̸= 0.
Then, we set G = B+M and hence M = G−B where M, G and B are biadditive
maps on R. Therefore, we have

M(xy, z) = G(xy, z)−B(xy, z)

= G(x, z)y∗ + xB(y, z)−B(x, z)y∗ − xB(y, z)

= (G(x, z)−B(x, z))y∗

= (G−B)(x, z)y∗

= M(x, z)y∗ for all x, y, z ∈ R.

This implies that M(xy, z) = M(x, z)y∗ for all x, y, z ∈ R. That is, M is a left
∗-bimultiplier on R. Therefore, we conclude that G can be written as G = B +M,
where B is a symmetric ∗-biderivation and M is a left ∗-bimultiplier on R. Thus,
in view of Theorem 2.1 above and Theorem 3.1 of ([3], for α = β = IR, the identity
map on R), we conclude that G maps R × R into Z(R). This proves the theorem
completely. 2

Theorem 3.2. Let R be a semiprime ∗-ring. If R admits a symmetric generalized
reverse ∗-biderivation G : R×R → R with an associated nonzero symmetric reverse
∗-biderivation B : R×R → R, then [B(x, y), t] = 0 for all x, y, t ∈ R.

Proof. We are given that G is a symmetric generalized reverse ∗-biderivation with
an associated nonzero symmetric reverse ∗-biderivation B, we have

(3.1) G(x, yz) = G(x, z)y∗ + zB(x, y) for all x, y, z ∈ R.

Replacing z by zt in the above relation, we find that

(3.2) G(x, y(zt)) = G(x, t)z∗y∗ + tB(x, z)y∗ + ztB(x, y) for all x, y, z, t ∈ R.

Also, we have

(3.3) G(x, (yz)t) = G(x, t)z∗y∗ + tB(x, z)y∗ + tzB(x, y) for all x, y, z, t ∈ R.
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Comparing (3.2) with (3.3), we obtain

(3.4) [z, t]B(x, y) = 0 for all x, y, z, t ∈ R.

Substituting B(x, y)z for z in (3.4) we find that

(3.5) B(x, y)[z, t]B(x, y) + [B(x, y), t]zB(x, y) = 0 for all x, y, z, t ∈ R.

In view of (3.4), the above expression reduces to

(3.6) [B(x, y), t]zB(x, y) = 0 for all x, y, z, t ∈ R.

Taking z = zt in (3.6), we get

(3.7) [B(x, y), t]ztB(x, y) = 0 for all x, y, z, t ∈ R.

Right multiplication by t to equation(3.6) forces that

(3.8) [B(x, y), t]zB(x, y)t = 0 for all x, y, z, t ∈ R.

Subtracting (3.7) from (3.8), we arrive at

(3.9) [B(x, y), t]z[B(x, y), t] = 0 for all x, y, z, t ∈ R.

The last equation can be rewritten in the form [B(x, y), t]R[B(x, y), t] = {0} for
all x, y, t ∈ R. It follows from the semiprimeness of R that [B(x, y), t] = 0 for all
x, y, t ∈ R. This proves the theorem. 2

Theorem 3.3. Let R be a prime ∗-ring. If R admits a symmetric generalized re-
verse ∗-biderivation G with an associated nonzero symmetric reverse ∗-biderivation
B, then R is commutative.

Proof. By Theorem 3.2, we have [B(x, y), t] = 0 for all x, y, t ∈ R. Replace y
by yz in the last expression and using the fact that B is a reverse ∗-biderivation,
we obtain B(x, z)[y∗, t] + [z, t]B(x, y) = 0 for all x, y, z, t ∈ R. This implies that
B(x, z)[y∗, z] = 0 for all x, y, z ∈ R by (3.4). Substituting y∗ for y in the last
relation, we get B(x, z)[y, z] = 0 for all x, y, z ∈ R. Now replace y by wt to
get B(x, z)w[t, z] = 0 for all w, x, z, t ∈ R. That is, B(x, z)R[t, z] = {0} for
all x, z, t ∈ R. The primeness of R yields that either [t, z] = 0 or B(x, z) = 0
for all x, t ∈ R. Now, we put A1 = {z ∈ R | [t, z] = 0 for all t ∈ R} and
A2 = {z ∈ R | B(x, z) = 0 for all x ∈ R}. Then, clearly A1 and A2 are additive
subgroups of R. Moreover, by the discussions given, R is the set-theoretic union
of A1 and A2. But a group can not be the set-theoretic union of two of its proper
subgroups, hence A1 = R or A2 = R. If A1 = R, then [t, z] = 0 for all z, t ∈ R and
hence R is commutative. On the other hand if A2 = R, then B(x, z) = 0 for all
x, z ∈ R, a contradiction. With this the proof is complete. 2

Similarly, we can prove the following:
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Theorem 3.4. Let R be a prime ∗-ring. If R admits a symmetric generalized ∗-
biderivation G with an associated nonzero ∗-biderivation B, then R is commutative.

We conclude the paper with the proof of our last two theorems in the setting
of C∗-algebra.

Theorem 3.5. Let A be a C∗ -algebra. If A admits a symmetric bilinear generalized
∗-biderivation G : A × A → A with an associated nonzero symmetric bilinear ∗-
biderivation B : A×A → A, then G maps A×A into Z(A).

Proof. As a consequence of Theorem 3.1, and of the fact that every C∗-algebra is
semiprime ring (viz., [2]). 2

Similarly, we can establish the following:

Theorem 3.6. Let A be a C∗ -algebra. If A admits a symmetric bilinear general-
ized reverse ∗-biderivation G : A × A → A with an associated nonzero symmetric
bilinear reverse ∗-biderivation B : A×A → A, then G maps A×A into Z(A).
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