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Abstract. In this paper, we introduce (g̃, s)-continuous functions between topological

spaces, study some of its basic properties and discuss its relationships with other topolog-

ical functions.

1. Introduction

It is well known that the concept of closedness is fundamental with respect to
the investigation of general topological spaces. Levine [28] initiated the study of
generalized closed sets. The concept of g̃-closed sets was introduced by Jafari et
al [23]. Initiation of contra-continuity was due to Dontchev [10]. Many different
forms of contra-continuous functions have been introduced over the years by various
authors [5, 11, 14, 15, 17, 19, 20, 22, 39].

In this paper, new generalizations of contra-continuity by using g̃-closed sets
called (g̃, s)-continuity are presented. Characterizations and properties of (g̃,s)-
continuous functions are discussed in detail. Finally, we obtain many important
results in topological spaces.
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2. Preliminaries

In this paper, spaces X and Y mean topological spaces on which no separation
axioms are assumed unless explicitly stated. For a subset A of a space X, cl(A) and
int(A) represent the closure of A and the interior of A respectively.

A subset A of a space X is said to be regular open (resp. regular closed) if A
= int(cl(A)) (resp. A = cl(int A))) [46]. The δ-interior [51] of a subset A of X is
the union of all regular open sets of X contained in A and it is denoted by δ-int(A).
A subset A is called δ-open [51] if A = δ-int(A). The complement of δ-open set is
called δ-closed. The δ-closure of a set A in a space (X,τ) is defined by δ-cl(A)= {x
∈ X: A ∩ int(cl(U)) ̸= ϕ, U ∈ τ and x ∈ U} and it is denoted by δ-cl(A).

The finite union of regular open set is said to be π-open [53]. The complement
of π-open set is said to be π-closed. A subset A is said to be semi-open [27] (resp.
α-open [33], preopen [32], β-open [1] or semi-preopen [2]) if A ⊂ cl(int(A)) (resp. A
⊂ int(cl(int(A))), A ⊂ int(cl(A)), A ⊂ cl(int(cl(A)))). The complement of semi-open
(resp. α-open, preopen, β-open) is said to be semi-closed (resp. α-closed, preclosed,
β-closed). The union (resp. intersection) of all α-open (resp. α-closed) sets, each
contained in (resp. containing) a set S in a topological space X is called α-interior
(resp. α-closure) of S and it is denoted by αint(S) (resp. αcl(S)). The union (resp.
intersection) of all semi-open (resp. semi-closed) sets, each contained in (resp. con-
taining) a set S in a topological space X is called semi-interior (resp. semi-closure)
of S and it is denoted by sint(S) (resp. scl(S)). The union (resp. intersection) of
all preopen (resp. preclosed) sets, each contained in (resp. containing) a set S in a
topological space X is called preinterior (resp. preclosure) of S and it is denoted by
pint(S) (resp. pcl(S)).

A subset A of a space X is said to be generalized closed (briefly, g-closed) [28]
(resp. πg-closed [13], ĝ-closed [48], *g-closed [49]) if cl(A) ⊆ U whenever A ⊆ U
and U is open (resp. π-open, semi-open, ĝ-open, *g-open) in X. The complement of
g-closed (resp. πg-closed, ĝ-closed, *g-closed) is said to be g-open (resp. πg-open,
ĝ-open, *g-open). A subset A of a space X is said to be #gs-closed [50] if scl(A)
⊆ U whenever A ⊆ U and U is *g-open in X. The complement of #gs-closed is
called #gs-open. A subset A of a space X is said to be g̃-closed [23] if cl(A) ⊆ U
whenever A ⊆ U and U is #gs-open in X. The complement of g̃-closed is said to
be g̃-open. The union (resp. intersection) of all g̃-open (resp. g̃-closed) sets, each
contained in (resp. containing) a set S in a topological space X is called g̃-interior
(resp. g̃-closure) of S and it is denoted by g̃-int(S) (resp. g̃-cl(S)).

A point x ∈ X is said to be a θ-semi-cluster point [25] of a subset A of X if
cl(U) ∩ A ̸= ϕ for every semi-open set U containing x. The set of all θ-semi-cluster
points of A is called the θ-semi-closure of A and is denoted by θ-s-cl(A). A subset
A is called θ-semi-closed [25] if A = θ-s-cl(A). The complement of a θ-semi-closed
set is called θ-semi-open.

The family of all δ-open (resp. g̃-open, g̃-closed, πg-open, πg-closed, regular
open, regular closed, semi-open, closed) sets of X containing a point x ∈ X is
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denoted by δO(X, x) (resp. G̃O(X, x), G̃C(X, x), πGO (X, x), πGC(X, x), RO(X,
x), RC(X, x), SO(X, x), C(X, x)). The family of all δ-open (resp. g̃-open, g̃-closed,
πg-open, πg-closed, semi-open, β-open, preopen, regular open, regular closed) sets
of X is denoted by δO(X) (resp G̃O(X), G̃C(X), πGO(X), πGC(X), SO(X), βO(X),
PO(X), RO(X), RC(X)).

Definition 2.1. A space X is said to be

1. s-Urysohn [3] if for each pair of distinct points x and y in X, there exist U
∈ SO(X, x) and V ∈ SO(X, y) such that cl(U) ∩ cl(V) = ϕ;

2. weakly Hausdorff [44] if each element of X is an intersection of regular closed
sets.

Definition 2.2([20]). Let B be a subset of a space X. The set ∩ {A ∈ RO(X) : B
⊂ A } is called the r-kernel of B and is denoted by r-ker (B).

Proposition 2.3([20]). The following properties hold for subsets A, B of a space
X:

1. x ∈ r-ker(A) if and only if A ∩ K ̸= ϕ for any regular closed set K containing
x.

2. A ⊂ r-ker(A) and A = r-ker(A) if A is regular open in X.

3. If A ⊂ B, then r-ker(A) ⊂ r-ker(B).

Lemma 2.4([30]). If V is an open set, then scl(V ) = int(cl(V )).

Definition 2.5. A space X is said to be

1. S-closed [47] if every regular closed cover of X has a finite subcover,

2. Countably S-closed [1] if every countable cover of X by regular closed sets has
a finite subcover,

3. S-Lindelof [29] if every cover of X by regular closed sets has a countable
subcover.

Theorem 2.6([23]). Union (intersection) of any two g̃-closed sets is again g̃-
closed.

Remark 2.7([13, 23, 48]). We have the following relations: closed ⇒ g̃-closed

⇒ ĝ-closed ⇒ g-closed ⇒ πg-closed.

None of these implications are reversible.

The subset {(x, f(x)) : x ∈ X} ⊂ X x Y is called the graph of a function f: X
→ Y and is denoted by G(f).



326 O. Ravi, S. Chandrasekar and S. Ganesan

3. Characterizations of g̃-open sets

Lemma 3.1. For any subset K of a topological space X, X\g̃-cl(K) = g̃-int (X\K).

Lemma 3.2. If a subset A is g̃-closed in a space X, then A = g̃-cl(A).

Lemma 3.3. If A is g̃-closed and #gs-open set, then A is closed.

Theorem 3.4. A set A is g̃-open in (X, τ) if and only if F ⊆ int(A) whenever F
is #gs-closed in X and F ⊆ A.

Proof. Assume that A is g̃-open, F ⊆ A and F is #gs-closed. Then X\F is #gs-open
and X\A ⊆ X\F. Since X\A is g̃-closed, cl(X\A) ⊆ X\F. It implies that X\ int(A)
⊆ X\F and hence F ⊆ int(A).

Conversely, put X\A = B. Suppose B ⊆ U where U is #gs-open. Now if X\A
⊆ U, then F = X\U ⊆ A and F is #gs-closed. It implies that F ⊆ int(A) and hence
X\int(A) ⊆ X\F = U. Therefore X\int(X\B) ⊆ U and consequently cl(B) ⊆ U.
Hence B is g̃-closed and therefore A is g̃-open. 2

Theorem 3.5. Suppose that A is g̃-open in X and that B is g̃-open in Y. Then A
× B is g̃-open in X × Y.

Proof. Suppose that F is closed and hence #gs-closed in X × Y and that F ⊆ A ×
B. By the previous theorem, it suffices to show that F ⊆ int(A × B).

Let (x,y) ∈ F. Then, for each (x,y) ∈ F, cl({x}) x cl({y}) = cl({x} x {y}) =
cl({x,y}) ⊂ cl(F) = F ⊂ A x B. Two closed sets cl({x}) and cl({y}) are contained
in A and B respectively. It follows from the assumption that cl({x}) ⊆ int(A) and
that cl({y}) ⊆ int(B). Thus (x,y) ∈ cl({x}) x cl({y}) ⊆ int(A) x int(B) ⊆ int(A x
B). It means that, for each (x,y) ∈ F, (x,y) ∈ int(A x B) and hence F ⊆ int(A x
B). Therefore A x B is g̃-open in X x Y. 2

Definition 3.6. A function f: X → Y is called g̃*-closed [24] if f (V) is g̃-closed set
in Y for each g̃-closed set V in X.

Theorem 3.7([24]). If a function f: X → Y is g̃*-closed, then for each subset B
of Y and each g̃-open set U of X containing f−1(B), there exists a g̃-open set V in
Y containing B such that f−1(V ) ⊂U.

4. Properties of (g̃, s)-continuous functions

Definition 4.1. A function f: X → Y is called (g̃, s)-continuous if the inverse image
of each regular open set of Y is g̃-closed in X.

Theorem 4.2. The following are equivalent for a function f: X → Y:

1. f is (g̃, s)-continuous,

2. The inverse image of a regular closed set of Y is g̃-open in X,
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3. f−1(int(cl(V))) is g̃-closed in X for every open subset V of Y,

4. f−1(cl(int(F))) is g̃-open in X for every closed subset F of Y,

5. f−1(cl(U)) is g̃-open in X for every U ∈ βO(Y),

6. f−1(cl(U)) is g̃-open in X for every U ∈ SO(Y),

7. f−1(int(cl(U))) is g̃-closed in X for every U ∈ PO(Y).

Proof. (1) ⇔ (2) : Obvious
(1) ⇔ (3) : Let V be an open subset of Y. Since int(cl(V)) is regular open,

f−1(int cl(V))) is g̃-closed. The converse is similar.
(2) ⇔ (4) : Similar to (1) ⇔ (3)
(2) ⇒ (5) : Let U be any β-open set of Y. By Theorem 2.4 of [2] that cl(U) is

regular closed. Then by (2) f−1(cl(U)) is g̃-open in X.
(5) ⇒ (6) : Obvious from the fact that SO(Y) ⊂ βO(Y).
(6) ⇒ (7): Let U ∈ PO(Y). Then Y\int(cl(U)) is regular closed and

hence it is semi-open. Then, we have X\f−1(int(cl(U))) = f−1(Y\int(cl(U))) =
f−1(cl(Y\int(cl(U)))) is g̃-open in X. Hence f−1int(cl(U))) is g̃-closed in X.

(7) ⇒ (1) : Let U be any regular open set of Y. Then U ∈ PO(Y) and hence
f−1(U) = f−1(int(cl(U))) is g̃-closed in X. 2

Lemma 4.3([37]). For a subset A of a topological space (Y, σ) the following prop-
erties hold:

1. αcl(A) = cl(A) for every A ∈ βO(Y),

2. pcl(A) = cl(A) for every A ∈ SO(Y),

3. scl(A) = int(cl(A)) for every A ∈ PO(Y).

Corollary 4.4. The following are equivalent for a function f: X → Y:

1. f is (g̃,s)-continuous,

2. f−1(αcl(A)) is g̃-open in X for every A ∈ βO(Y),

3. f−1(pcl(A)) is g̃-open in X for every A ∈ SO(Y),

4. f−1(scl(A)) is g̃-closed in X for every A ∈ PO(Y).

Proof. It follows from Lemma 4.3. 2

Theorem 4.5. Suppose that G̃C(X) is closed under arbitrary intersections. The
following are equivalent for a function f: X → Y:

1. f is (g̃, s)-continuous,

2. the inverse image of a θ-semi-open set of Y is g̃-open,

3. the inverse image of a θ-semi-closed set of Y is g̃-closed,

4. f(g̃-cl(U)) ⊂ r-ker(f(U)) for every subset U of X,
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5. g̃-cl(f−1(V)) ⊂ f−1(r-ker(V)) for every subset V of Y,

6. for each x ∈ X and each V ∈ SO(Y, f(x)), there exists a g̃-open set U in X
containing x such that f(U) ⊂ cl(V),

7. f−1(V) ⊂ g̃-int(f−1(cl(V))) for every V ∈ SO(Y),

8. f(g̃-cl(A)) ⊂ θ-s-cl(f(A)) for every subset A of X,

9. g̃-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)) for every subset B of Y,

10. g̃-cl(f−1(V)) ⊆ f−1(θ-s-cl(V)) for every open subset V of Y,

11. g̃-cl(f−1(V)) ⊆ f−1(scl(V)) for every open subset V of Y,

12. g̃-cl(f−1(V)) ⊆ f−1(int(cl(V)) for every open subset V of Y.

Proof. (1) ⇒ (2): Since any θ-semi-open set is a union of regular closed sets, by
using Theorem 4.2, (2) holds.

(2) ⇒ (6): Let x ∈ X and V ∈ SO(Y) containing f(x). Since cl(V) is θ-semi-open
in Y, there exists a g̃-open set U in X containing x such that x ∈ U ⊂ f−1(cl(V)).
Hence f(U) ⊂ cl(V).

(6) ⇒ (7): Let V ∈ SO(Y) and x ∈ f−1(V). Then f(x) ∈ V. By (6), there exists
a g̃-open set U in X containing x such that f(U) ⊂ cl(V). It follows that x ∈ U ⊂
f−1(cl(V)). Hence x ∈ g̃-int(f−1(cl(V))). Thus, f−1(V)⊂ g̃-int(f−1(cl(V))).

(7) ⇒ (1): Let F be any regular closed set of Y. Since F ∈ SO(Y), then by (7),
f−1(F) ⊂ g̃-int(f−1(F)). This shows that f−1(F) is g̃-open in X. Hence, by Theorem
4.2, (1) holds.

(2) ⇔ (3) : Obvious.
(1) ⇒ (4): Let U be any subset of X. Let y /∈ r-ker(f(U)). Then there exists

a regular closed set F containing y such that f(U) ∩ F = ϕ. Hence, we have U ∩
f−1(F) = ϕ and g̃-cl(U) ∩ f−1(F) = ϕ. Therefore, we obtain f(g̃-cl(U)) ∩ F = ϕ and
y /∈ f(g̃-cl(U)). Thus, f(g̃-cl(U)) ⊂ r-ker(f(U)).

(4) ⇒ (5): Let V be any subset of Y. By (4), f(g̃-cl(f−1(V))) ⊂ r-ker(V) and
g̃-cl(f−1(V)) ⊂ f−1(r-ker(V)).

(5) ⇒ (1): Let V be any regular open set of Y. By (5), g̃-cl(f−1(V)) ⊂ f−1(r-
ker(V)) = f−1(V) and g̃-cl(f−1(V)) = f−1(V). We obtain that f−1(V) is g̃-closed in
X.

(6) ⇒ (8): Let A be any subset of X. Suppose that x ∈ g̃-cl(A) and G is any
semi-open set of Y containing f(x). By (6), there exists U ∈ G̃O(X, x) such that
f(U) ⊂ cl(G). Since x ∈ g̃-cl(A), U ∩ A ̸= ϕ and hence ϕ ̸= f(U) ∩ f(A) ⊂ cl(G) ∩
f(A). Therefore, we obtain f(x) ∈ θ-s-cl(f(A)) and hence f(g̃-cl(A)) ⊂ θ-s-cl(f(A)).

(8) ⇒ (9): Let B be any subset of Y. Then f(g̃-cl(f−1(B))) ⊂ θ-s-cl(f(f−1(B))
⊂ θ-s-cl(B) and g̃-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)).

(9) ⇒ (6): Let V be any semi-open set of Y containing f(x). Since cl(V) ∩ (Y\
cl(V)) = ϕ, we have f(x) /∈ θ-s-cl(Y\cl(V)) and x /∈ f−1(θ-s-cl(Y\cl(V))). By (9), x
/∈ g̃-cl(f−1(Y\cl(V))). Hence, there exists U ∈ G̃O(X, x) such that U ∩ f−1(Y\cl(V))
= ϕ and f(U) ∩ (Y\cl(V)) = ϕ. It follows that f(U) ⊂ cl(V). Thus,(6) holds.
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(9) ⇒ (10): Obvious.
(10) ⇒ (11): Obvious from the fact that θ-s-cl(V) = scl(V) for an open set V.
(11) ⇒ (12): Obvious from Lemma 2.4.
(12) ⇒ (1): Let V ∈ RO(Y). Then by (12) g̃-cl(f−1(V)) ⊂ f−1(int(cl(V))) =

f−1(V). Hence, f−1(V) is g̃-closed which proves that f is (g̃, s)-continuous. 2

Corollary 4.6. Assume that G̃C(X) is closed under arbitrary intersections. The
following are equivalent for a function f: X → Y:

1. f is (g̃,s)-continuous,

2. g̃-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)) for every B ∈ SO(Y),

3. g̃-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)) for every B ∈ PO(Y),

4. g̃-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)) for every B ∈ βO(Y).

Proof. In Theorem 4.5, we have proved that the following are equivalent.

1. f is (g̃,s)-continuous.

2. g̃-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)) for every subset B of Y.

Hence the corollary is proved. 2

5. The related functions with (g̃, s)-continuous functions

Definition 5.1. A function f: X → Y is said to be

1. perfectly continuous [35] if f−1(V) is clopen in X for every open set V of Y,

2. regular set-connected [12, 16] if f−1(V) is clopen in X for every V ∈ RO(Y),

3. almost s-continuous [6, 38] if for each x ∈ X and each V ∈ SO(Y, f(x)), there
exists an open set U in X containing x such that f(U) ⊂ scl(V),

4. strongly continuous [26] if the inverse image of every set in Y is clopen in X,

5. RC-continuous [11] if f−1(V) is regular closed in X for each open set V of Y,

6. contra R-map [17] if f−1(V) is regular closed in X for each regular open set
V of Y,

7. contra-super-continuous [22] if for each x ∈ X and for each F ∈ C(Y, f(x)),
there exists a regular open set U in X containing x such that f(U) ⊂ F,

8. almost contra-super-continuous [15] if f−1(V) is δ-closed in X for every regular
open set V of Y,

9. contra continuous [10] if f−1(V) is closed in X for every open set V of Y,

10. contra g-continuous [5] if f−1(V) is g-closed in X for every open set V of Y,
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11. (θ, s)-continuous [25, 39] if for each x ∈ X and each V ∈ SO(Y, f(x)), there
exists an open set U in X containing x such that f(U) ⊂ cl(V),

12. contra πg-continuous [19] if f−1(V) is πg-closed in X for each open set V of
Y,

13. ĝ-continuous [48] if f−1(V) is ĝ-closed in X for each closed set V of Y,

14. g̃-continuous [24] if f−1(V) is g̃-closed in X for each closed set V of Y,

15. (g, s)-continuous [14] if f−1(V) is g-closed in X for each regular open set V
of Y,

16. (ĝ, s)-continuous [43] if f−1(V) is ĝ-closed in X for each regular open set V
of Y,

17. (πg, s)-continuous [14] if f−1 (V) is πg-closed in X for each regular open set
V of Y.

Definition 5.2. A function f: X → Y is said to be contra ĝ-continuous [43] (resp.
contra g̃-continuous) if f−1(V) is ĝ-closed (resp. g̃-closed) in X for each open set V
of Y.

Remark 5.3. The following diagram holds for a function f: X → Y:

strongly continuous

?
perfectly continuous

?
RC continuous

?
contra-super-continuous

?
contra-continuous

?
contra g̃-continuous

?
contra ĝ-continuous

?
contra g-continuous

?
contra πg-continuous

-

-

-

-

-

-

-

-

-

almost s-continuous

?
regular set-connected

?
contra R-map

?
almost contra-super-continuous

?
(θ, s)-continuous

?
(g̃, s)-continuous

?
(ĝ, s)-continuous

?
(g, s)-continuous

?
(πg, s)-continuous
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None of these implications is reversible as shown in the following examples and
in the related paper [43].

Example 5.4. Let X = Y = {a, b, c}, τ = {ϕ, X, {b}, {a, c}} and σ = {ϕ, Y, {a,
b}}. Then the identity function f: X → Y is (g̃, s)-continuous but it is not contra
g̃-continuous.

Example 5.5. Let X = Y = {a, b, c}, τ = {ϕ, X, {a}, {b, c}} and σ = {ϕ, Y,
{a, b}}. Then the identity function f: X → Y is contra ĝ-continuous but it is not
contra g̃-continuous.

Example 5.6. Let X = Y = {a, b, c, d}, τ = σ = {ϕ, X = Y, {b}, {a, c, d}}.
Then the function f: X → Y which is defined as f(a) = b, f(b) = c, f(c) = d, f(d) =
a is (ĝ, s)-continuous but it is not (g̃, s)-continuous.

Example 5.7. Let X = Y = {a, b, c, d}, τ = σ = {ϕ, X = Y, {c}, {a, d}, {a, c,
d}}. Then the function f: X → Y which is defined as f(a) = c, f(b)= c, f(c) = b,
f(d) = b is (g̃, s)-continuous but it is not (θ,s)-continuous.

Let X = {a, b, c, d} = Y, τ = {ϕ, X, {b}, {b, c}, {b, c, d}} and σ = {ϕ, Y,
{a}, {a, b}. Then the identity function f: X → Y is contra g̃-continuous but it is
not contra continuous.

A topological space (X, τ) is said to be extremely disconnected [4] if the closure
of every open set of X is open in X.

Definition 5.8. A function f: X → Y is said to be almost g̃-continuous if f−1(V)
is g̃-open in X for every regular open set V of Y.

Theorem 5.9. Let (Y, σ) be extremely disconnected. Then, the following are equiv-
alent for a function f: (X, τ) → (Y, σ):

1. f is (g̃, s)-continuous,

2. f is almost g̃-continuous.

Proof. (1) ⇒ (2): Let x ∈ X and U be any regular open set of Y containing f(x).
Since Y is extremely disconnected, by lemma 5.6 of [41] U is clopen and hence U is
regular closed. Then f−1(U) is g̃-open in X. Thus, f is almost g̃-continuous.

(2) ⇒ (1): Let K be any regular closed set of Y. Since Y is extremely discon-
nected, K is regular open and f−1(K) is g̃-open in X. Thus, f is (g̃, s)-continuous. 2

Definition 5.10. A space is said to be PΣ [52] or strongly s-regular [21] if for any
open set V of X and each x ∈ V, there exists K ∈ RC(X, x) such that x ∈ K ⊂ V.

Definition 5.11. A space (X, τ) is called g̃-T1/2 if every g̃-closed set is closed.

Theorem 5.12. Let f: X → Y be a function from a g̃-T1/2- space X to a topological
space Y. The following are equivalent.
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1. f is (θ, s)-continuous,

2. f is (g̃, s)-continuous.

Theorem 5.13. Let f: X → Y be a function. Then, if f is (g̃, s)-continuous, X is
g̃-T1/2 and Y is PΣ, then f is continuous.

Proof. Let G be any open set of Y. Since Y is PΣ, there exists a subfamily Φ of
RC(Y) such that G = ∪ {A: A ∈ Φ}. Since X is g̃-Tl/2 and f is (g̃, s)-continuous,
f−1(A) is open in X for each A ∈ Φ and f−1(G) is open in X. Thus, f is continuous.

Theorem 5.14. Let f: X → Y be a function from a g̃-T1/2-space (X, τ) to an
extremely disconnected space (Y, σ). Then the following are equivalent.

1. f is (g̃,s )-continuous.

2. f is (θ, s)-continuous.

3. f is almost contra-super-continuous.

4. f is contra R-map.

5. f is regular set-connected.

6. f is almost s-continuous.

Proof. (6) ⇒ (5) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1): Obvious.
(1) ⇒ (6) Let V be any semi-open and semi-closed set of Y. Since V is semi-open,
cl(V) = cl(int (V)) and hence cl(V) is open in Y. Since V is semi-closed, int(cl(V))
⊂ V ⊂cl(V) and hence int(cl(V)) = V = cl(V). Therefore, V is clopen in Y and V
∈ RO(Y) ∩ RC(Y). Since f is (g̃, s)-continuous, f−1(V) is g̃-open and g̃-closed in X.
Since X is g̃-T1/2-space , τ = G̃O(X). Thus, f−1(V) is clopen in X and hence f is
almost s-continuous [38, Theorem 3.1]. 2

Definition 5.15. A space is said to be weakly PΣ [36] if for any V ∈ RO(X) and
each x ∈ V, there exists F ∈ RC(X,x) such that x ∈ F ⊂ V.

Theorem 5.16. Let f: (X, τ) → (Y, σ) be a (g̃, s)-continuous function and G̃C(X)
be closed under arbitrary intersections. If Y is weakly PΣ and X is g̃-T1/2, then f
is regular set-connected.

Proof. Let V be any regular open set of Y. Since Y is weakly PΣ, there exists a
subfamily Φ of RC(Y) such that V = ∪ {A: A ∈ Φ}. Since f is (g̃, s)-continuous,
f−1(A) is g̃-open in X for each A ∈ Φ and f−1(V) is g̃-open in X. Also f−1(V) is
g̃-closed in X since f is (g̃, s)-continuous. Since X is g̃-T1/2 space, then τ = G̃O(X).
Hence f−1(V) is clopen in X and then f is regular set-connected. 2

Definition 5.17. A function f: X → Y is said to be g̃-irresolute [24] if f−1(V) is
g̃-open in X for every V ∈ G̃O(X).

Theorem 5.18. Let f: X → Y and g: Y → Z be functions. Then, the following
properties hold:
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1. If f is g̃-irresolute and g is (g̃, s)-continuous, then g o f: X → Z is (g̃, s)-
continuous.

2. If f is (g̃, s)-continuous and g is contra R-map, then g o f: X → Z is almost
g̃-continuous.

3. If f is g̃-continuous and g is (θ, s)-continuous, then g o f: X → Z is (g̃,
s)-continuous.

4. If f is (g̃, s)-continuous and g is RC continuous, then g o f: X → Z is g̃-
continuous.

5. If f is almost g̃-continuous and g is contra R-map, then g o f: X → Z is (g̃,
s)-continuous.

Theorem 5.19. Let Y be a regular space and f: X → Y be a function. Suppose
that the collection of g̃-closed sets of X is closed under arbitrary intersections. Then
if f is (g̃, s)-continuous, f is g̃-continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y containing f(x).
Since Y is regular, there exists an open set G in Y containing f(x) such that cl(G)
⊂ V. Since f is (g̃, s)-continuous, there exists U ∈ G̃O(X, x) such that f(U) ⊂ cl(G).
Then f(U) ⊂ cl(G) ⊂ V. Hence, f is g̃-continuous. 2

6. Fundamental properties

Definition 6.1([24]). A space X is said to be

1. g̃-T2 if for each pair of distinct points x and y in X, there exist U ∈ G̃O(X,
x) and V ∈ G̃O(X, y) such that U ∩ V = ϕ.

2. g̃-T1 if for each pair of distinct points x and y in X, there exist g̃-open sets
U and V containing x and y, respectively, such that y /∈ U and x /∈ V.

Remark 6.2. The following implications are hold for a topological space X.

1. T2 ⇒ g̃-T2

2. T1 ⇒ g̃-T1

These implications are not reversible.

Example 6.3. Let X = {a, b, c} with τ = {ϕ, X, {a}, {b}, {c}, {a, b}, {a, c}, {b,
c}}. Then X is both g̃-T2 and g̃-T1 but it is neither T1 nor T2.

Theorem 6.4. The following properties hold for a function f: X → Y:

1. If f is a (g̃, s)-continuous injection and Y is s-Urysohn, then X is g̃-T2.

2. If f is a (g̃, s)-continuous injection and Y is weakly Hausdorff, then X is g̃-T1.
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Proof. (1) Let Y be s-Urysohn. By the injectivity of f, f(x) ̸= f(y) for any distinct
points x and y in X. Since Y is s-Urysohn, there exist A ∈ SO(Y, f(x)) and B ∈
SO(Y, f(y)) such that cl(A) ∩ cl(B) = ϕ. Since f is a (g̃, s)-continuous, by theorem
4.5, there exist g̃-open sets C and D in X containing x and y, respectively, such that
f(C) ⊂ cl(A) and f(D) ⊂ cl(B) such that C ∩ D = ϕ. Thus, X is g̃-T2.

(2) Let Y be weakly Hausdorff. For x ̸= y in X, there exist A, B ∈ RC(Y) such
that f(x) ∈ A, f(y) /∈ A, f(x) /∈ B and f(y) ∈ B. Since f is (g̃, s)-continuous, f−1(A)
and f−1(B) are g̃-open subsets of X such that x ∈ f−1(A), y /∈ f−1(A), x /∈ f−1 (B)
and y ∈ f−1(B). Hence, X is g̃-T1. 2

Theorem 6.5([24]). A space X is g̃-T2 if and only if for any pair of distinct points
x, y of X there exist g̃-open sets U and V such that x ∈ U and y ∈ V and g̃-cl(U)
∩ g̃-cl(V ) = ϕ.

Definition 6.6. A graph G(f) of a function f: X → Y is said to be (g̃, s)-graph if
there exist a g̃-open set A in X containing x and a semi-open set B in Y containing
y such that (A × cl(B)) ∩ G(f) = ϕ for each (x, y) ∈ (X × Y)\G(f).

Proposition 6.7. The following properties are equivalent for a function f: X → Y:

1. G(f) is (g̃, s)-graph,

2. For each (x, y) ∈ (X x Y)\G(f), there exist a g̃-open set A in X containing x
and a semi-open set B in Y containing y such that f(A) ∩ cl(B) = ϕ.

3. For each (x, y) ∈ (X x Y)\G(f), there exist a g̃-open set A in X containing x
and a regular closed set K in Y containing y such that f(A) ∩ K = ϕ.

Definition 6.8. A subset S of a space X is said to be S-closed relative to X [34] if
for every cover {Ai: i ∈ I} of S by semi-open sets of X, there exists a finite subset
I0 of I such that S ⊂ ∪{cl(Ai) : i ∈ I0}.

Theorem 6.9. If a function f: X → Y has a (g̃, s)-graph and the collection of
g̃-closed sets of X is closed under arbitrary intersections, then f−1(A) is g̃-closed in
X for every subset A which is S-closed relative to Y.

Proof. Suppose that A is S-closed relative to Y and x /∈ f−1(A). We have (x, y) ∈
(X x Y)\G(f) for each y ∈ A and there exist a g̃-open set By containing x and a
semi-open set Cy containing y such that f(By) ∩ cl(Cy) = ϕ. Since {Cy: y ∈ A}
is a cover by semi-open sets of Y, there exists a finite subset {y1, y2, ..., yn} of A
such that A ⊂ ∪{cl(Cyi): i = 1, 2, ..., n}. Take B = ∪{Byi : i = 1, 2, ..., n}. Then
B is a g̃-open containing x and f(B) ∩ A = ϕ. Thus, B ∩ f−1(A) = ϕ and hence
f−1(A) is g̃-closed in X. 2

Theorem 6.10. Let f: X → Y be a (g̃, s)-continuous function. Then the following
properties hold:

1. G(f) is a (g̃, s)-graph if Y is an s-Urysohn.
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2. f is almost g̃-continuous if Y is s-Urysohn S-closed space and G̃C(X) is closed
under arbitrary intersections.

Proof. (1) Let Y be s-Urysohn and (x, y) ∈ (X x Y) \ G(f). Then f(x) ̸= y. Since
Y is s-Urysohn, there exist M ∈ SO(Y, f(x)) and N ∈ SO(Y, y) such that cl(M) ∩
cl(N) = ϕ. Since f is (g̃, s)-continuous, by theorem there exists a g̃-open set A in
X containing x such that f(A) ⊂ cl(M). Hence, f(A) ∩ cl(N) = ϕ and G(f) is (g̃,
s)-graph in X x Y.
(2) Let F be a regular closed set in Y. By theorem 3.3 and 3.4 [34], F is S-closed
relative to Y. Hence, by theorem 6.9 and (1), f−1(F) is g̃-closed in X and hence f is
almost g̃-continuous. 2

Theorem 6.11. Let f, g: X → Y be functions and g̃-cl(S) be g̃-closed for each S
⊂ X. If

1. f and g are (g̃, s)-continuous,

2. Y is s-Urysohn,

then A = {x ∈ X : f(x) = g(x)} is g̃-closed in X.

Proof. Let x ∈ X\A, then it follows that f(x) ̸= g(x). Since Y is s-Urysohn, there
exist M ∈ SO(Y, f(x)) and N ∈ SO(Y, g(x)) such that cl(M) ∩ cl(N) = ϕ. Since f
and g are (g̃, s)-continuous, there exist g̃-open sets U and V containing x such that
f(U) ⊂ cl(M) and g(V) ⊂ cl(N). Hence, U ∩ V = P ∈ G̃O(X), f(P) ∩ g(P) = ϕ and
then x /∈ g̃-cl(A). Thus, A is g̃-closed in X. 2

Definition 6.12. A subset A of a topological space X is said to be g̃-dense in X if
g̃-cl(A) = X.

Theorem 6.13. Let f, g: X → Y be functions and g̃-cl(S) be g̃-closed for each S
⊂ X. If

1. Y is s-Urysohn,

2. f and g are (g̃, s)-continuous,

3. f = g on g̃-dense set A ⊂ X, then f = g on X.

Proof. Since f and g are (g̃, s)-continuous and Y is s-Urysohn, by Theorem 6.11,
B = {x ∈ X : f(x) = g(x)} is g̃-closed in X. We have f = g on g̃-dense set A ⊂ X.
Since A ⊂ B and A is g̃-dense set in X, then X = g̃-cl(A) ⊂ g̃-cl(B) = B. Hence f
= g on X. 2

Definition 6.14([24]). A space X is said to be

1. countably g̃-compact if every countable cover of X by g̃-open sets has a finite
subcover,

2. g̃-Lindelof if every g̃-open cover of X has a countable subcover.
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Theorem 6.15. Let f: X → Y be a (g̃, s)-continuous surjection. Then the following
statements hold:

1. if X is g̃-Lindelof, then Y is S-Lindelof.

2. if X is countably g̃-compact, then Y is countably S-closed.

Definition 6.16. A space X is called g̃-connected if X is not the union of two
disjoint nonempty g̃-open sets.

Example 6.17. Let X = {a, b, c} with τ = {ϕ, X, {a}, {b, c}}. Then X is not
g̃-connected.

Example 6.18. Let X = {a, b, c} with τ = {ϕ, X, {a}, {a, b}}. Then X is
g̃-connected.

Theorem 6.19. Let f: X → Y be a (g̃, s)-continuous surjection. If X is g̃-connected,
then Y is connected.

Proof. Assume that Y is not connected space. Then there exist nonempty disjoint
open sets A and B such that Y = A ∪ B. Also A and B are clopen in Y. Since f is (g̃,
s)-continuous, f−1(A) and f−1(B) are g̃-open in X. Moreover f−1(A) and f−1(B) are
nonempty disjoint and X = f−1(A) ∪ f−1(B). This shows that X is not g̃-connected.
This contradicts the assumption that Y is not connected. 2
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