DOI QR코드

DOI QR Code

Resistance and Survival of Cronobacter sakazakii under Environmental Stress of Low Temperature

저온 환경에서 Cronobacter sakazakii의 저항과 생존

  • Kim, Se-Hun (Department of Food and Nutrition, Yeungnam University) ;
  • Jang, Sung-Ran (Department of Food and Nutrition, Yeungnam University) ;
  • Chung, Hyun-Jung (Department of Food and Nutrition, Inha University) ;
  • Bang, Woo-Suk (Department of Food and Nutrition, Yeungnam University)
  • 김세훈 (영남대학교 식품영양학과) ;
  • 장성란 (영남대학교 식품영양학과) ;
  • 정현정 (인하대학교 식품영양학과) ;
  • 방우석 (영남대학교 식품영양학과)
  • Received : 2011.02.01
  • Accepted : 2011.07.29
  • Published : 2011.08.30

Abstract

Cronobacter sakazakii has been isolated from a wide range of environmental sources and from several foods of animal and plant origin. The objective of this study was to determine the resistance of C. sakazakii (ATCC 12868, ATCC 29004, and ATCC 29544) in cold, cold-freeze thaw, cold-acid, and cold starvation-freeze thaw stress. The number of C. sakazakii decreased to 1 log CFU/mL at $5^{\circ}C$ (cold storage) for 10 days. When C. sakazakii was cultivated at a low temperature ($13^{\circ}C$), the population of C sakazakii ATCC 12868 and 29004 increased to $10^9$ CFU/mL, and the population of C. sakazakii ATCC 29544 increased to $10^8$ CFU/mL. For C. sakazakii ATCC 12868 and 29004, the cold-adapted cells ($5^{\circ}C$ 24 hr) decreased by 4 log CFU/mL, and the low-temperature-cultivated cells ($13^{\circ}C$) decreased by 0.5 log CFU/mL. In this study, low-temperature cultivation enhanced the freeze-thaw cross-resistance due to the metabolic changes in the cells. Cold stress ($5^{\circ}C$ 48 hr, $13^{\circ}C$ cultivation) enhanced the cold-acid cross-resistance. The cold-starved cells in the sterilized 0.1% peptone water enhanced the freeze-thaw cross-resistance with significant differences (p<0.05). Therefore, the increased tolerance of the cold-adapted or low-temperature-cultivated C. sakazakii cells to freeze-thaw, acid, or starvation suggests that such environments should be considered when processing minimally processed foods or foods with extended shelf life.

C. sakazakii ATCC 12868, 29004, 29544를 이용하여 저온 저장 중의 변화를 살펴보고 저온과 냉/해동, 저온과 산, 저온에서 starvation한 것과 냉/해동의 교차저항에 대해 알아보았다. C. sakazakii를 $5^{\circ}C$에서 10일간 저장하였을 때 모든 균주들에서 1 log CFU/mL의 사멸을 보였다. C. sakazakii를 $13^{\circ}C$에서 배양한 결과, C. sakazakii ATCC 12868, 29004는 각각 7일째, 5일째에 $10^9$ CFU/mL을 나타냈고 C. sakazakii ATCC 29544는 5일 배양 후부터 30일 동안 $10^9$ CFU/mL에 도달하지 못하고 $10^8$ CFU/mL를 유지하였다. 저온과 냉/해동의 교차저항 결과, C. sakazakii ATCC 12868, 29004에서 대조구와 $5^{\circ}C$에서 2일간 저장한 것은 4 log CFU/mL의 사멸을 보였고 $13^{\circ}C$에서 배양한 것은 일정한 균수를 유지하였다. 저온과 산의 교차저항 실험에서 C. sakazakii ATCC 29544를 제외하고 다른 두 균주에서 대조구에 비해 $5^{\circ}C$ 에서 2일간 저장한 것, $13^{\circ}C$에서 배양한 것은 일정하게 높은 생존율을 보였다. C. sakazakii는 멸균된 $5^{\circ}C$ 0.1% 펩톤수에서 starvation한 것이 $5^{\circ}C$의 TSB배지와 멸균된 증류수에서 starvation한 것보다 냉/해동 환경에서 D값이 가장 높게 나타났다. C. sakazakii는 $5^{\circ}C$에서 균의 생장이 저해되었지만 $13^{\circ}C$에서 C. sakazakii의 생장이 가능하였다. 이 연구 결과는 저온에서 적응하거나 저온에서 배양된 C. sakazakii의 다른 환경에서 교차저항성을 알아보는데 유용한 기초 자료로 사용될 수 있을 것이다.

Keywords

References

  1. Aresni A, Malamou-Ladas E, Koutsia C, Xanthou M, Trikka E (1987) Outbreak of colonization of neonates with Enterobacter sakazakii. J Hosp Infect, 9, 143-150 https://doi.org/10.1016/0195-6701(87)90052-1
  2. Bar-Oz B, Preminger A, Peleg O, Block C, Arad I (2001) Enterobacter sakazakii infection in the newborn. Acta Paediat, 90, 356-358 https://doi.org/10.1080/080352501300067857
  3. Ben-Hamouda T, Foulon T, Ben-Cheikh-Masmoudi A, Fendri C, Belhadj O, Gen-Mahrez K (2003) Molecular epidemiology of an outbreak of multiresistant Klebsiella pneumoniae in a Tunisian neonatal ward. J Med Microbiol, 52, 427-433 https://doi.org/10.1099/jmm.0.04981-0
  4. El-Sharoud WM, O'Brien S, Negredo C, Iversen C, Fanning S, Healy B (2009) Characterization of Cronobacter recovered from dried milk and related products. BMC Micrbiol, 9, 24-32 https://doi.org/10.1186/1471-2180-9-24
  5. Lin LC, Beuchat LR (2007) Survival and growth of Enterobacter sakazakii in infant cereal as affected by composition, reconstitution liquid, and storage temperature. J Food Prot, 70, 1410-1422 https://doi.org/10.4315/0362-028X-70.6.1410
  6. Beuchat LR, Kim HK, Gurtler JB, Lin LC, Ryu JH, Richards GM (2009) Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. Int J Food Microbiol, 204-213
  7. Miriam F (2007) Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol, 116, 1-10 https://doi.org/10.1016/j.ijfoodmicro.2006.12.018
  8. Iversen C, Forsythe SJ (2003) Risk profile of Enterobacter sakazakii, and emergent pathogen associated with infant milk formula. Trends Food Sci Technol, 14, 443-454 https://doi.org/10.1016/S0924-2244(03)00155-9
  9. Dancer GI, Mah JH, Rhee MS, Hwang IG, Kang DH (2009) Resistance of Enterobacter sakazakii (Cronobacter spp.) to environmental stresses. J Applied Microbiol, 107, 1606-1614 https://doi.org/10.1111/j.1365-2672.2009.04347.x
  10. Edelson-Mammel SG, Buchanas RL (2004) Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. J Food Prot, 67, 60-63 https://doi.org/10.4315/0362-028X-67.1.60
  11. Lee EJ, Ryu TH, Park JH (2009) Tolerance of Korean Cronobacter spp. (Enterobacter sakazakii) isolated to desiccation. Korean J Food Sci Technol, 41, 681-686
  12. Lee SY, Jin HH (2008) Inhibitory activity of natural antimicrobial compounds alone or in combination with nisin against Enterobacter sakazakii. Letters in Applied Microbiol, 47, 315-321 https://doi.org/10.1111/j.1472-765X.2008.02432.x
  13. Stock I, Wiedemann B (2002) Natural antibiotic susceptibility of Enterobacter amnigenus, Enterbacter cancerogenus, Enterobacter gergoviae and Enterobacter sakazakii strains. Clin Microbiol Infect, 8, 564-578 https://doi.org/10.1046/j.1469-0691.2002.00413.x
  14. Abee T, Wouters JA (1999) Microbial stress response in minimal processing. Int J Food Microbiol, 50, 65-91 https://doi.org/10.1016/S0168-1605(99)00078-1
  15. Rosset P, Noel V, Morelli E (2007) Time-temperature profiles of infant milk fomula in hospitals and analysis of Enterobacter sakazakii growth. Food Control, 18, 1412-1418 https://doi.org/10.1016/j.foodcont.2006.10.004
  16. Gurtler JB, Beuchat LR (2007) Survival of Enterobacter sakazakii in powdered infant formula as affected by composition, water activity, and temperature. J Food Prot, 70, 1579-1586 https://doi.org/10.4315/0362-028X-70.7.1579
  17. Kim HK, Beuchat LR (2005) Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. J Food Prot, 68, 2541-2552 https://doi.org/10.4315/0362-028X-68.12.2541
  18. Leenanon B, Drake MA (2001) Acid stress, starvation, and cold stress affect poststress behavior of Escherichia coli O157:H7 and nonpathogenic Escherichia coli. J Food Prot, 64, 970-974 https://doi.org/10.4315/0362-028X-64.7.970
  19. Nazarowec-White M, Farber JM (1997) Incidence, survival, and growth of Enterobacter sakazakii in infant formula. J Food Prot, 60, 226-230 https://doi.org/10.4315/0362-028X-60.3.226
  20. Walker SJ (1990) Growth characteristics of food poisoning organism at sub-optimal temperatures. In: Chilled Foods: the revolution in freshness. Zeuthen P, Cheftel JC, Erikson C, Cromley T, Linko R, Paulus K (Editors), Elsevier Applied Science, London, England, p 159-162
  21. Bang WS, Drake MA (2002) Resistance of cold- and starvation-stressed Vibrio vulnificus to heat and freeze-thaw exposure. J Food Prot, 65, 975-980 https://doi.org/10.4315/0362-028X-65.6.975
  22. Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol. 21, 1266-1267 https://doi.org/10.1038/nbt1103-1266
  23. Berry ED, Foegeding PM (1997) Cold temperature adaptation and growth of microorganisms. J Food Prot, 60, 1583-1594 https://doi.org/10.4315/0362-028X-60.12.1583
  24. Goldstein J, Pollitt NS, Inouye M (1990) Major cold-shock protein of Escherichia coli. Proc Natl Acad Sci USA, 87, 283-287 https://doi.org/10.1073/pnas.87.1.283
  25. Willimsky G, Bang H, Fischer G, Marahiel M (1992) Characterization of cspB, a Bacillus subtillis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol, 174, 6326-6335 https://doi.org/10.1128/jb.174.20.6326-6335.1992
  26. Gurtler JB, Beuchat LR (2007) Growth of Enterobacter sakazakii in reconstituted infant formula as affected by composition and temperature. J Food Prot, 70, 2095-2103 https://doi.org/10.4315/0362-028X-70.9.2095
  27. Campbell J, Bang W, Isonhood J, Gerard PD, Drake MA (2004) Effects of salt, acid, and MSG on cold storage survival and subsequent acid tolerance of Escherichia coli O157:H7. Food Microiol, 21, 727-735 https://doi.org/10.1016/j.fm.2004.02.004
  28. Elhanafi D, Leenanon B, Bang W, Drake MA (2004) Impact of cold and cold-acid stress on poststress tolerance and virulence factor expression of Escherichia coli O157:H7. J Food Prot, 67, 19-26 https://doi.org/10.4315/0362-028X-67.1.19
  29. Farber JM, Forsythe SJ (2008) Enterobacter sakazakii. ASM press, Washington DC, USA, p 15-19
  30. Koutsoumanis KP, Kendall PA, Sofos JN (2004) Modeling the boundaries of growth of Salmonella typhimurium in broth as function of temperature, water activity, and pH. J Food Prot, 67, 53-59 https://doi.org/10.4315/0362-028X-67.1.53
  31. De Koning-Ward TF, Robins-Browne RM (1995) Contribution of urease to acid tolerance in Yersinea enterocolitica. Infect Immun, 63, 3790-3795
  32. Kjelleberg S, Hermansson M, Marden P (1987) The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol, 41, 25-49 https://doi.org/10.1146/annurev.mi.41.100187.000325
  33. Martin A, Auger EA, Blum PH, Schultz JE (1989) Genetic basis of starvation survival in nondifferentiating bacteria. Annu Rev Microbiol, 43, 293-316 https://doi.org/10.1146/annurev.mi.43.100189.001453
  34. Siegele DA, Kolter R (1992) Life after log. J Bacteriol 174, 345-348 https://doi.org/10.1128/jb.174.2.345-348.1992