DOI QR코드

DOI QR Code

Inherent and Interfacial Evaluation of Fibers/Epoxy Composites by Micromechanical Tests at Cryogenic Temperature

극저온에서의 미세역학시험법을 이용한 섬유/수지 복합재료의 계면 특성 평가

  • 권동준 (경상대학교 나노.신소재공학부) ;
  • 왕작가 (경상대학교 나노.신소재공학부) ;
  • 구가영 (경상대학교 나노.신소재공학부) ;
  • 엄문광 (경상대학교 나노.신소재공학부) ;
  • 박종만 (경상대학교 나노.신소재공학부)
  • Published : 2011.08.31

Abstract

Retention of interfacial shear strength (IFSS) of polymer composites at cryogenic temperature application is very important. In this work, single carbon tiber reinforced epoxy compositc was used to evaluate IFSS and apparent modulus under room and cryogenic temperatures. The property change of carbon and selected epoxy for particularly cryogenic temperature application were tested in tension and compression. Tensile strength and elongation of carbon fiber decreased at cryogenic temperature, whereas tensile modulus was almost same. On the other hand, epoxy matrix showed the increased tensile strength but decreased elongation. It can be due to maximum thermal contraction existing free volume in cryogenic temperature. IFSS increased up to $-10^{\circ}C$ and then decreased steadily. However, IFSS at cryogenic temperature was still similar to that at room temperature. This result is very useful to cryogenic application since selected epoxy toughness and interfacial adhesion can keep at such low temperature.

극저온 응용에서 사용하는 고분자복합재료의 계면물성 유지가 아주 중요하다. 본 연구에서는 상온과 극저온에서 사용하는 단일 탄소섬유강화 에폭시 복합재료를 마이크로드롭넷 시험과 전기-미세역학시험법을 이용한 계면전단강도와 겉보기 강성도를 평가하였다. 탄소섬유와 저온용 에폭시의 극저온에 따른 기계적 물성변화를 확인하였다. 극저온에서 탄소섬유 인장실험 결과, 상온과 비교하여 강성도는 유지하면서 강도와 연신율이 감소하였다. 이에 비해, 에폭시 기지는 상온보다 극저온에서 강도가 증가되었으나, 연신율이 감소하는 결과를 보여주었다. 이는 탄소섬유에 비해 에폭시 수지내 존재하는 빈 공간이 극저온에서 열적 수축이 최대로 일어나기 때문이다. 계면전단강도는 $-10^{\circ}C$에서 최대를 보인 후에 극저온까지 점차 감소를 보여 주었다. 그러나, 탄소섬유와 YDF-175 에폭시가 극저온에서도 여전히 상온보다 양호한 계면전단강도를 보여주었다. 이 결과는 아주 유용하며 선정된 저온용 에폭시의 인성과 계면접착력이 극저온에서도 유지되기 때문이다.

Keywords

References

  1. Yildiz Y., Nalbant M., "A review of cryogenic cooling in machining processes," International Journal of Machine Tools and Manufacture, Vol. 48, 2008, pp. 947-964. https://doi.org/10.1016/j.ijmachtools.2008.01.008
  2. Choi S.J., Sankar B.V., " Fracture toughness of transverse cracks in graphite/epoxy laminates at cryogenic conditions," Composites: Part B, Vol. 38, 2007, pp. 193-200. https://doi.org/10.1016/j.compositesb.2006.06.005
  3. Melcher R.J., Johnson W. S., "Mode I fracture toughness of an adhesively bonded composite-composite joint in a cyogenic environment," Composites Science and Technology, Vol. 67, 2007, pp. 501-506. https://doi.org/10.1016/j.compscitech.2006.08.026
  4. Chen Z.K., Yang G., Yang J.P., Fu S.Y., Ye L., Huang YG., "Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by nbutyl glycidyl ether," Polymer, Vol. 50, 2009, pp. 1316-1323. https://doi.org/10.1016/j.polymer.2008.12.048
  5. Kim M.G., Hong J.S., Kang S.G., Kim C.G., "Enhancement of the crack growth resistance of a carbon/epoxy composite by adding multi-walled carbon nanotubes at a cryogenic temperature," Composites: Part A, Vol. 39, 2008, pp. 647-654. https://doi.org/10.1016/j.compositesa.2007.07.017
  6. Huang C.J., Fu S.Y." Zhang Y.H., Lauke B., Li L.F., Ye L., "Cryogenic properties of $SiO_{2}$/epoxy nanocomposites," Cryogenics, Vol. 45, 2005, pp. 450-454. https://doi.org/10.1016/j.cryogenics.2005.03.003
  7. Yang J.P., Yang G., Xu G., Fu S.Y, " Cryogenic mcchanical behaviors of MMT/epoxy nanocomposites," Composites Science and Technology, Vol. 67, 2007, pp. 2934-2940. https://doi.org/10.1016/j.compscitech.2007.05.012
  8. Jung T., Subramanian R.Y., Manoranjan Y.S., "Prediction of fibre strength at the critical length: a simulation theory and experimental verification for bimodally distributed carbon fibre strengths," Journal of materials science, Vol. 28, 1993, pp. 4489-4496. https://doi.org/10.1007/BF01154961
  9. 왕작가, 공조엘, 박종만, 이우일, 박종규, "미세역학적 실험법과 젖음성을 이용한 CNT-에폭시 나노복합재료 경사형시편의 계면특성," 한국복합재료학회지, 제22권 제5호, 2009, pp. 8-13.
  10. Park J.M., Kim D.S., Kim S.J., Kim P.G., Yoon D.J., Oevries K.L., "Inherent sensing and interfacial evaluation of carbon nanofiber and nonotube/epoxy composites using electrical resistance measurement and micromechanical technique," Composites: Part B, Vol. 38, 2007, pp. 847-861. https://doi.org/10.1016/j.compositesb.2006.12.004

Cited by

  1. Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating vol.27, pp.3, 2014, https://doi.org/10.7234/composres.2014.27.3.109
  2. Measurement of Electrical Resistance Method in Characterizing the Slip ratio of Carbon fiber/Matrix at the Interface vol.25, pp.6, 2012, https://doi.org/10.7234/kscm.2012.25.6.205
  3. Evaluation of Mechanical Properties and Damage Sensing of CNT-Polypropylene Composites by Electro-Micromechanical Techniques vol.26, pp.1, 2013, https://doi.org/10.7234/kscm.2013.26.1.1
  4. A Study of Damage Sensing and Repairing Effect of CNT Nanocomposites vol.27, pp.6, 2014, https://doi.org/10.7234/composres.2014.27.6.219