
1 91

논문접수일：2011년 01월 03일 논문게재확정일：2011년 07월 25일

논문수정일(1차：2011년 03월 12일, 2차：2011년 07월 25일)

* 한양대학교 산업경영공학과

† 교신저자

확률적 수요를 갖는 단일구매자와 단일공급자 시스템의

다품목 통합발주문제

정원찬*․김종수*
†

Joint Replenishment Problem for Single Buyer and Single

Supplier System Having the Stochastic Demands

Won-Chan Jeong*․Jong Soo Kim*

Abstract

In this paper, we analyze a logistic system involving a supplier who produces and delivers multiple types of items

and a buyer who receives and sells the products to end customers. The buyer controls the inventory level by replenish-

ing each product item up to a given order-up-to-level to cope with stochastic demand of end customers. In response

to the buyer's order, the supplier produces or outsources the ordered item and delivers them at the start of each

period.

For the system described above, a mathematical model for a single type of item was developed from the buyer's

perspective. Based on the model, an efficient method to find the cycle length and safety factor which correspond to

a local minimum solution is proposed. This single product model was extended to cover a multiple item situation. From

the model, algorithms to decide the base cycle length and order interval of each item were proposed. The results

of the computational experiment show that the algorithms were able to determine the global optimum solution for

all tested cases within a reasonable amount of time.

Keyword：Joint Replenishment Problem, Stochastic Demand, Optimization

한국경영과학회지
제36권 제3호
2011년 9월

92 정원찬․김종수

1. Introduction

The joint replenishment problem (JRP) con-

cerns the inventory control of multiple item types

with the objective of minimizing the sum of rele-

vant costs. This paper analyzes the JRP in a lo-

gistic system involving a supplier who produces

and delivers multiple items and a buyer who re-

ceives and sells these items to end customers.

In this system, the buyer controls the inventory

level by replenishing each item type up to a given

order-up-to level in order to meet the stochastic

demands of the end customers. In response to the

buyer's order, the supplier produces or out-

sources the ordered items and delivers them at

the beginning of each period.

Previous research related to the JRP can be

categorized into two groups. The first group of

research concerns the JRP under a deterministic

demand. Goyal [7] developed an enumeration al-

gorithm to find the global optimum for a cyclic

policy. Silver [21] developed an efficient heuristic

algorithm that was later improved by Goyal and

Belton [8]. Kaspi and Rosenblatt [12] studied a

JRP with similar settings to introduce an algo-

rithm with superior performance. Jackson et al.

[9] introduced a power-of-two policy and dem-

onstrated that the policy’s error was within six

percent of the optimum. Rosenblatt and Lee [20]

discussed a JRP in a system with imperfect pro-

duction processes. Fogarty and Barringer [5] an-

alyzed joint order release decisions under de-

pendent demand. Viswanathan [25] proposed a

modification of the previous algorithm suggested

by Fung and Ma [6] and ensured that the modi-

fied algorithm obtained the optimal strict cycle

policy. Lee and Yao [16] derived a global opti-

mum search algorithm under the power-of-two

policy. Khouja et al. [14] proposed an algorithm

for solving the JRP for products that may experi-

ence unit cost change. For a general survey of

the JRP including the deterministic demand cas-

es, refer to Khouja and Goyal [13].

The second group of research pertains to sto-

chastic but stationary demands. The policies in

this group can be divided into two sub-groups：

continuous review policy and periodic review

policy. Balintfy [2] initiated research on the con-

tinuous policy by proposing a can-order policy.

Under this policy, an item must be ordered when

its inventory position reaches a must-order level.

At the same time, all other items whose in-

ventory positions are at or below a can-order

level are also ordered. This policy was further

analyzed by Silver [22] and Federgruen et al. [4].

Ohno and Ishigaki [19], Melchiors [17], and

Nielsen and Larsen [18] analyzed a JRP with a

Poisson or compound Poisson process. Later,

Larsen [15] suggested a Q(s, S) policy for a sys-

tem with a compound correlated Poisson process.

The periodic review policies review inventory

status at every deterministic interval or at a sto-

chastic interval determined by cumulative demand.

Atkins and Iyogun [1] proposed two policies. The

first policy orders each item type to be re-

plenished up to an individual base stock level. In

the second policy, each item is replenished at an

interval that is an integer multiple of a base pe-

riod. Visnawathan [24] developed a policy called

the Q(s, S) policy, in which each item is reviewed

at a fixed interval, and an independent order-

up-to-level policy is used to control each item

type. Johansen and Melchiors [11] suggested a

near-optimal can-order policy applicable to a pe-

확률적 수요를 갖는 단일구매자와 단일공급자 시스템의 다품목 통합발주문제 1 93

riodic review environment and showed that the

policy performed well under conditions of irregu-

lar demand.

Eynan and Kropp [3] examined a periodic re-

view system with variable out of stock costs.

They proposed a simple heuristic for determining

both the base cycle and order interval of each

product type, as well as a service level that mini-

mizes the total cost. The heuristic they proposed

was shown to find a solution close to the global

optimum. Jeong and Kim [10] presented a model

and solution methodology for the same problem.

The present paper extends the paper by Jeong

and Kim [10] to solve a problem similar to the

one analyzed by Eynan and Kropp [3] but with

the added complexity that a target customer

service constraint must first be satisfied. This

modification reflects a real practice in which

management considers the customer service rate

as a primary management target, followed by the

second objective of profit maximization. Our pa-

per introduces three kinds of algorithms for cal-

culating the base cycle, cycle multiplier, and safe-

ty factor of each item type that satisfies given

service targets at the minimum cost. The results

of the computational experiment show that the

algorithms are able to identify the global opti-

mum solution for all tested cases within a rea-

sonable amount of time.

Section 2 defines our problem and introduces

a mathematical model and an algorithm for a sin-

gle product problem. Section 3 extends the result

of the single item problem to a multiple item

problem, for which a mathematical model and al-

gorithms are introduced. Section 4 presents the

results of the computational experiments. Finally,

Section 5 concludes this paper with a summary

and comments on the direction of future research.

2. Single Item Problem

This section introduces a mathematical model

for a buyer who orders a single type of item ac-

cording to a periodic order-up-to-level policy

called (R, S) policy.

The following is a list of necessary notations.

R ：review interval, in year,

L ：lead time needed for a replenishment order

to arrive at the buyer’s location, in year,

k ：safety factor used for setting the safety

stock level of the buyer,

D ：annual demand rate of the end customers,

in units per year, in units per year,

 ：standard deviation of D, in units per year,

A ：buyer’s ordering cost per order, in dollars,

h ：buyer’s holding cost per unit per year, in

dollars,

b ：buyer’s shortage cost per unit, in dollars,

s ：buyer’s order-up-to level, in units,

TC：total cost per year incurred by the buyer,

in dollars.

The buyer’s total cost consists of ordering,

holding, and shortage costs. The total ordering

cost per year is the ordering cost per period div-

ided by R, i.e.,

inventory

period1 2 3 4 5 6

s

I

II

[Figure 1] Inventory Change of the Buyer

94 정원찬․김종수



. (1)

[Figure 1] shows a plot of the buyer’s inventory

change; the average length of I is the average

demand per cycle and may be expressed as DR.

The height denoted by II is the average inventory

remaining before a replenishment delivery arri-

ves. By definition, II represents the safety stock

level of the buyer. When k is used to denote the

safety factor of the buyer, the safety stock level

is expressed as

 (2)

Thus, the average height of the inventory

maintained per year is






 . (3)

The holding cost per year is the value deter-

mined by multiplying the result of (3) by the per

unit holding cost; this value can be expressed as



 . (4)

A shortage occurs when the end customer’s

demand exceeds the order-up-to level of the

buyer. Thus, the expected number of shortages

per cycle is




∞

, (5)

where  is the probability density function

(pdf) of y, which denotes the customer demand

during R+L. The expected shortage cost per year

is


 



∞

. (6)

In (6),

  . (7)

When we assume, as in Eynan and Kropp [3],

that the customer demand during an year is dis-

tributed normally with mean D and standard de-

viation , demand during R+L time grid is nor-

mally distributed with a mean D(R+L) and stan-

dard deviation  . When y is used to denote

the demand during R+L time grid, its pdf is ex-

pressed as

 




 
    

. (8)

By setting

 


, (9)

we obtain

 . (10)

Using (8) through (10), (6) can be rewritten

as


 



∞

 (11)

 
 

  

∞



 
 



∞

 

 ×



 




 





∞



 

 



∞




∞


 

 

 

  ,

확률적 수요를 갖는 단일구매자와 단일공급자 시스템의 다품목 통합발주문제 1 95

where  


 


, that is the pdf of the stan-

dard normal distribution,  
∞



, that

is the cumulative distribution function of the stan-

dard normal distribution, and    

, that is the unit normal loss function (See

for reference page 721 of Silver et al. [23]).

Thus the total expected cost to the buyer is

formulated as the function in equation (12).

   




 (12)

 

  .

As shown in <Appendix A>, the cost function

in (12) is not guaranteed to be a convex function.

However, it is expected to be a convex function

for parameter values in reasonable ranges or at

least behave like a convex function. [Figure 2]

showing a typical shape of the cost function

when the convexity condition is not met support

our expectation. It was thus hoped that R, k val-

ues that minimize the cost function in (12) can

be found by taking advantage of the first neces-

sary condition of stationary point. In this regard,

a partial differentiation with respect to k is per-

formed. This will yield

TC

Rk1

 [Figure 2] Contour Graph of the Cost Function in
  axis




    


. (13)

By setting




   , (14)

we obtain the following relationship that must

be satisfied by the optimal R, k values：

  

, (15)

or

  

. (16)

Partial differentiation of (12) with respect to

R yields




   







 (17)

 



 .

By setting




   , (18)

it is obtained that









  (19)
 





.

Substituting (16) into (19) yields







 (20)

× 
 

 





.

96 정원찬․김종수

The value of k that satisfies (20) can be ob-

tained using either a general search method or

an appropriate software package. During our

computational experiment, Microsoft Excel was

used to solve (20). The search area for k was

confined to practically feasible values of k from

0 to 4.0. A safety factor of 4.0 corresponds to a

100% customer service rate. Inserting this k val-

ue into (16) yields the corresponding R value.

This R, k set is the optimal cycle length and

safety factor for the buyer considering only cost

minimization.

However, the buyer’s use of this R, k set

(which seeks only cost minimization) may lead

to an unacceptably low customer service level,

e.g., a fill rate of 60%, a situation in which 40%

of the incoming customers are unable to pur-

chase the product due to inventory shortage. As

such, it is common practice for retailers to pursue

a cost minimizing objective as a second priority,

attempting to first achieve a target service level

[23]. Considering this practice, the final solution

for the buyer is the R, k set that satisfies the

target customer service level at the minimum

cost.

An algorithm to determine the final solution

that satisfies a preset target service level at min-

imum cost is introduced below. The minimum

cost k value is denoted as  , and the target

customer service level is represented by   .

RK_Single Algorithm

Step 1：Determine the minimum cost k value ac-

cording to (20) and save the value as

 .

Step 2：If  ≥  , go to Step 3. Otherwise,

go to Step 4.

Step 3：Set  ← and use (16) to calculate the

corresponding R value. Generate an R,

k set as the solution to the problem.

Stop.

Step 4：Set  ←  and use (16) to calculate

the corresponding R value. Generate an

R, k set as the solution to the problem.

Stop.

A check is performed in Step 2 to determine

if the minimum cost k value is greater than the

target customer service level. If so, then the R,

k set that yields the minimum cost also satisfies

the target service level. Since the cost function

is convex with respect to k for a given value of

R, this set can be accepted as the final solution.

Step 4 represents a case in which the minimum

cost k does not satisfy the target service level.

In such a case, the given target customer service

level is the level that satisfies the target at mini-

mum cost. As shown in <Appendix A>, the cost

function is convex for wide range of input

parameters. Thus the solution generated by the

RK_Single algorithm is expected to locate close

to the global optimum solution for most cases.

3. Multiple Item Problem

This section introduces a method for periodic

coordinated replenishment of two or more types

of items. Additional notations are as follows.

i ：item type,    ⋯  ,

A ：major ordering cost for the family of items,

in dollars,

 ：minor ordering cost for item i, in dollars,

 ：safety factor used for setting the safety

stock level of item i,

 ：demand rate of item i, in units per year,

확률적 수요를 갖는 단일구매자와 단일공급자 시스템의 다품목 통합발주문제 1 97

 ：standard deviation of  , in units per year,

R ：length of base cycle, in year,

 ：lead time of item i, in year,

 ：the integer multiple of R intervals in which

item i is ordered.

The general assumptions of the JRP also apply

to our problem. Thus, it is assumed that a major

ordering cost of A is incurred when one or more

items is ordered. Also, there is a minor ordering

cost of  when item type i is ordered. There is

an order of at least one item type for every R

interval, and item type i is included in an order

for every  time interval. The relevant costs

of the inventory control include ordering, holding,

and shortage costs.

Traditional JRP has been studied extensively

with assumption that item demand is indepen-

dent with each other, which is also accepted for

our multiple item problem.1) More specifically, it

is assumed that demand of item i is normally

distributed with mean  and standard deviation

 and is independent of demands of other items.

With this assumption, the total cost in Equation

(21) can be derived using similar reasoning as

in the single item case.

  




  



   (21)

 
  



 

 


   .

In (21),    ⋯  ∈ ,  ⋯   ,
and    is the unit normal loss function.

1) A few exceptional papers analyzed the JRP with

correlated demands between items. For more de-

tails, please refer to Larsen [15].

Our problem is to find the R, ,  set that min-

imizes the cost function under the constraint that

the given target service rate of each item should

be satisfied. Partial differentiation of the total

cost function with respect to  yields the follow-

ing relationship.



     (22)

 

  ,

where   is the cumulative distribution func-

tion of the standard normal distribution. Thus,




   yields the following relationship

between    values on a local optimum point.

    ,    ⋯  . (23)

Equation (23) can be rearranged to

    ,    ⋯  . (24)

From (24), it is observed that the following re-

lationship holds between  and  .

       (25)

  ⋯    .

Rearranging (25) yields

 
    , (26)

    ⋯ .

Partial differentiation of the total cost function

with respect to R yields the following relation-

ship.


  



  



 
 (27)

98 정원찬․김종수

 
  

 









   
 .

Thus, 


   yields the following re-

lationship between R, ,  values satisfying the

first order necessary condition of a local mini-

mum.


 

 







 (28)

   
 

 


  



 
 .

Plugging (24) into (28) yields the equation


 

 






  

    

      

   
    


  





  




  



 

. (29)

Equation (29) can be numerically solved for 

if the  is fixed at given values. It took less than

one second for a program coded into Microsoft

Excel to obtain a  value that satisfied (29) dur-

ing our experiment. Plugging the obtained 

value into (24) for   yields the R value. The

values for   ⋯  can be found by plugging

the  value into (26). This procedure can gen-

erate R and  values that minimize the total cost

function when  values are given.

Since it is difficult to find a method that can

simultaneously determine the R, ,  values, a

sequential approach was chosen for our method.

The  values minimizing the cost function is

first determined. Based on these  values, R

and  values, which minimize the cost function,

can be determined. Finally, an iterative search is

conducted to improve the solution found by this

sequential approach.

The method used to find the  values mini-

mizing the cost is based on the following ideas：

(1) Find a group of items that should be or-

dered at every cycle.

(2) Estimate a tentative cycle length.

(3) Based on the tentative cycle length, eval-

uate each item that is not in group (1) to

find an integer multiple of the cycle length

that is suitable to the item.

A method implementing these ideas is in-

troduced below.

Algorithm for finding  values

(MI_Algorithm)

Step 1：Using the RK_Single algorithm intro-

duced in Section 2, find an optimal cycle

length for each item at a given service

target and save it in  .

Step 2：Sort the  values in ascending order.

Step 3：Let  be the smallest j that satisfies

′, where ′ is the optimal cycle
length when items 1 to j are replenished

at the same time.

Step 4：The items i such that ≤ have an 

of 1. For item types     ⋯ 

will have   , where q satisfies

 ≤ ′

≤ . (30)

확률적 수요를 갖는 단일구매자와 단일공급자 시스템의 다품목 통합발주문제 1 99

In Step 3, the optimal cycle length when the

item types 1 to j are replenished at the same time

(′) is determined by solving (29) for  , after
substituting 1 for  to . This  value is then

plugged into (24) to yield a cost minimizing cycle

length for the joint replenishment of items 1 to

j, i.e., ′. Equation (30) is based on the logic used
by Eynan and Kropp [3].

After calculating the  values using the

MI_Algorithm, it is possible to determine the cost

minimizing values of R and . However, it is still

possible that this R, ,  set will not satisfy the

given target service rates. Using the following

algorithm, however, we can find, for preset ,

the R,  set that satisfies the given target service

rate of each item type at minimum total cost.

Multiple Item (Product) Algorithm

(MP_Algorithm)

Step 1：Run MI_Algorithm to obtain  values.

Step 2：Solve (29) for  using the  values

obtained in Step 1.

Step 3：Plug  from Step 2 into (26) to get

  ⋯  .

Step 4：If  ≥
  for all i, go to Step 5; other-

wise, go to Step 6.

Step 5：Plug  into (24) to obtain R. Report

   as the solution. Stop.

Step 6：Let    
    

   .
 

Reset 

← 


  .

Step 7：Plug 

 from Step 6 into (24) to obtain

a new cycle length R.

Step 8：Plug R from Step 7 into (23) to obtain

new  values for all ≠
 .

Step 9：If  ≥
  for all i, report    as

the solution and stop; otherwise, go to

Step 6.

In Step 4, if  ≥
  for all i, then the current

 values are the safety factors that satisfy the

given target safety rates at the minimum cost.

Otherwise, the item with the largest deviation

from the given service rate is chosen in Step 6,

and its  value is replaced by its target value.

This  value change requires the current cycle

length to be adjusted to make the cycle feasible.

A new feasible cycle length is calculated in Step

7, and, based on this new cycle, the safety factors

of all other items are updated in Step 8. During

the iterative search of the MP_Algorithm,  val-

ues are fixed to the one obtained by the MI_

Algorithm.

Since the cost function in (21) is not a convex

function, solution generated by the MP_Algori-

thm may not be a local minimum. In this regard,

a computational experiment to estimate how

close the solution by the MP_Algorithm locates

to the global minimum solution will be performed

in the next section.

4. Computational Experiments

In this section, the accuracy of our method is

tested in a variety of settings. The experiments

were conducted on a computer with a Microsoft

XP operating system, a 2.0 MHz CPU, and 2 GB

of RAM. The algorithms were programmed into

Microsoft Excel. A complete enumeration was

used to obtain the global optimal solution. A per-

cent deviation of the total cost was used as a

measure of performance; it is defined as：

Percent deviation   , (31)

where TC denotes the total cost of the MP_

Algorithm and  is the one found by the com-

100 정원찬․김종수

<Table 1> Input Data for the First Test

item
number

minor
ordering cost

holding cost
demand
per year

standard deviation
of per year demand

lead time
per unit

shortage cost

1 1.8 0.4 2,900 500 0.05 0.8

2 2.0 1.0 1,850 500 0.05 2.0

3 1.2 0.8 2,750 500 0.05 1.6

4 3.2 0.2 1,600 500 0.05 0.4

5 3.1 0.8 3,200 500 0.05 1.6

6 2.7 0.2 1,400 500 0.05 0.4

<Table 2> Result of the First Test

item
number

MP_Algorithm global optimum

  cycle length total cost   cycle length total cost

1 1 1.915

0.0550 1,909.86

1 1.915

0.0550 1,909.86

2 1 1.915 1 1.915

3 1 1.915 1 1.915

4 2 1.594 2 1.594

5 1 1.915 1 1.915

6 2 1.594 2 1.594

plete enumeration.

The data in <Table 1>, which was used in

Eynan and Kropp [3], was used for our initial

test, which was conducted with the minimum

target values set to zero. This setting was nec-

essary to produce the testing conditions used in

Eynan and Kropp [3], which solved a JRP with-

out the minimum service target constraint.

The output generated from the MP_Algorithm

is summarized in <Table 2>, showing that the

total cost of the MP_Algorithm’s solution is equal

to the cost of the global optimum solution. Thus,

we conclude that our algorithm found the global

optimum solution for the first problem. The com-

putational time required by the MP_Algorithm

was 0.41 CPU second and the complete enumera-

tion took 3044.47 CPU seconds.

The second test was conducted for a problem

set that was prepared using the input parameters

randomly generated from probability distribu-

tions. The probability distributions for generat-

ing input parameters and other relevant data are

summarized in <Table 3>. The problems with

three different problem sizes of 4, 6, and 8 items

were prepared for the test. For each problem size,

ten different problems were solved using the

MP_Algorithm. The complete enumeration was

also performed to determine the global optimum.

The output summarized in <Table 4> shows

that the MP_Algorithm successfully found the

global optimum solutions in all 30 problems. Each

number in <Table 4> was rounded in fourth digit.

The reason why our algorithm never failed to

find the global optimal was analyzed by examin-

ing contour graphs of the total cost function.

As shown in [Figure 1], the cost function looks

like a convex function of two variables select for

each axis. Thus, a probable cause is that there

확률적 수요를 갖는 단일구매자와 단일공급자 시스템의 다품목 통합발주문제 1 101

<Table 3> Input Data for the Second Test

major
ordering cost

minor
ordering cost

holding
cost

demand rate
per year

standard deviation
of per year demand

lead time
per unit

shortage cost

U*[10, 30] U[1, 5] U[5, 10] U[1000, 5000] U[50, 250] U[0.01, 0.1] U[10, 50]

Note) * Uniform distribution

<Table 4> Output of the Second Test

problem size
percent deviation number of global

number of trial
optimumfoundaverage maximum minimum standard deviation

4 0.000 0.000 0.000 0.000 10/10

6 0.000 0.000 0.000 0.000 10/10

8 0.000 0.000 0.000 0.000 10/10

<Table 5> Result for the Bigger Sized Problems

problem size
percent deviation

average CPU second
average maximum minimum standard deviation

10 -2.869 -4.091 -0.998 0.826 0.68

20 -5.274 -6.882 -3.165 1.017 1.29

30 -7.715 -9.352 -5.263 1.332 2.04

exists only one  value satisfying the necessary

condition of a local optimum in (29) in the region

where  value is less than 4.0. As a result, the

single  value found by (29) leads to the best

solution in that region, which is the global opti-

mum solution for our problem.

The average computational time required by

the MP_Algorithm was 0.27, 0.44 and 0.59 CPU

second for 4, 6 and 8 sized problems. By the com-

plete enumeration, it took 3386.72, 4811.54 and

6842.29 CPU seconds to find the global optimum.

A test for realistic bigger sized problems was

also carried out. For the test, 10, 20 and 30 item

problem sets were generated from the probability

distributions explained in <Table 3>. Since it

was not possible to get the global optimum sol-

ution by the enumeration due to excessive com-

putational time, the best solution found by the

enumeration in two hours limit was used for a

comparison purpose. Performance measure was

the percent deviation in (31) used previously.

Ten problems were solved for each problem size

to get an averaged performance measure.

The result shown in <Table 5> reveals that

the MP_Algorithm’s solution is 2.869, 5.274, 7.715

percent better than the one found by the enumer-

ation in two hour limit. It took on average 0.68,

1.29, 2.04 CPU seconds to get the solution for

each problem size by our algorithm. As shown

in [Figure 3], the trend of computational time for

growing problem size looks to be linear. This is

a desired property for real application, where a

larger size problem should be routinely solved.

From the results found during the experi-

ments, it was concluded that our algorithms

proved their accuracy by finding the global opti-

mum for all tested problems. They also showed

their efficiency by finding a good solution in less

102 정원찬․김종수

than 3.0 CPU seconds for more realistic larger

sized problems.

[Figure 3] Trend of Computational Time

5. Conclusion

This paper analyzes a stochastic joint replen-

ishment problem with multiple type of items. A

mathematical model was developed from a buy-

er’s perspective. Using a condition of a local opti-

mum solution, an algorithm to determine the cy-

cle length and safety factor that satisfy a given

target service rate at the minimum cost was

proposed.

A multiple item model was constructed by ex-

tending the single item model and conditions for

a local optimum was analyzed. Based on the

findings, three kinds of algorithms were devel-

oped to determine the base cycle length and the

multiplier and safety factor of each item that sat-

isfy each item’s target service rate at the mini-

mum total expected cost.

The results of the computational experiment

showed that the algorithms were able to find the

global optimum solution for all tested cases

within a reasonable amount of time. By exploit-

ing the results and insights obtained from this

research, buyers faced with a stochastic JRP will

be able to more effectively handle the problem

and will be able to identify the most profitable

means of joint replenishment.

Further research may be necessary to incor-

porate multiple suppliers into the current prob-

lem, so that it becomes a multi-item, multi-sup-

plier joint replenishment problem. Also, analysis

of a problem with correlated demands between

items seems to be necessary.

References

[1] Atkins, D. and P. Iyogun, “Periodic versus

‘can-order’ policies for coordinated multi-

item inventory systems,” Management Sci-

ence, Vol.34, No.6(1988), pp.791-796.

[2] Balintfy, J.L., “On a basic class of multi-

item inventory problems,” Management Sci-

ence, Vol.10, No.2(1964), pp.287-297.

[3] Eynan, A. and D.H. Kropp, “Effective and

simple EOQ-like solutions for stochastic de-

mand periodic review systems,” European

Journal of Operational Research, Vol.180,

No.3(2007), pp.1135-1143.

[4] Federgruen, A., H. Groenevelt, and H.C.

Tijms, “Coordinated replenishments in a

multi-item inventory system with compound

Poisson demands,” Management Science,

Vol.30, No.3(1984), pp.344-357.

[5] Fogarty, D. and R. Barringer, “Joint order

release decisions under dependent demand,”

Production and Inventory Management Jo-

urnal, Vol.28, No.1(1987), pp.55-61.

[6] Fung, R.Y.K. and X. Ma, “A new method

for joint replenishment problems,” The Jour-

nal of the Operational Research Society,

Vol.52, No.3(2001), pp.358-362.

[7] Goyal, S.K., “Determination of optimum pac-

확률적 수요를 갖는 단일구매자와 단일공급자 시스템의 다품목 통합발주문제 1 103

kaging frequency of items jointly repleni-

shed,” Management Science, Vol.21, No.4

(1974), pp.436-443.

[8] Goyal, S.K. and A.S. Belton, “On A simple

method of determining order quantities in

joint replenishments under deterministic de-

mand,” Management Science, Vol.25, No.6

(1979), p.604.

[9] Jackson, P., W. Maxwell, and J. Muckstadt,

“The joint replenishment problem with a

powers-of-two restriction,” IIE Transac-

tions, Vol.17, No.1(1985), pp.25-32.

[10] Jeong, W.C. and J.S. Kim, “Joint replenish-

ment problem for a retailing system with

stochastic demands,” Proceedings of Korean

OR and MS Society, (2010), pp.1-8.

[11] Johansen, S.G. and P. Melchiors, “Can-or-

der policy for the periodic-review joint re-

plenishment problem,” The Journal of the

Operational Research Society, Vol.54, No.3

(2003), pp.283-290.

[12] Kaspi, M. and M.J. Rosenblatt, “An impro-

vement of silver’s algorithm for the joint re-

plenishment problem,” IIE Transactions,

Vol.15, No.3(1983), pp.264-267.

[13] Khouja, M. and S.K. Goyal, “A review of the

joint replenishment problem literature：

1989～2005,” European Journal of Opera-

tional Research, Vol.186, No.1(2008), pp.1-

16.

[14] Khouja, M., S. Park, and C. Saydam, “Joint

replenishment problem under continuous

unit cost change,” International Journal of

Production Research, Vol.43, No.2(2005),

pp.311-326.

[15] Larsen, C., “The Q(s, S) control policy for

the joint replenishment problem extended to

the case of correlation among item-de-

mands,” International Journal of Produc-

tion Economics, Vol.118, No.1(2009), pp.292-

297.

[16] Lee, F.C. and M.J. Yao, “A global optimum

search algorithm for the joint replenishment

problem under power-of-two policy,” Com-

puters and Operations Research, Vol.30,

No.9(2003), pp.1319-1333.

[17] Melchiors, P., “Calculating can-order poli-

cies for the joint replenishment problem by

the compensation approach,” European Jo-

urnal of Operational Research, Vol.141, No.3

(2002), pp.587-595.

[18] Nielsen, C. and C. Larsen, “An analytical study

of the Q(s, S) policy applied to the joint re-

plenishment problem,” European Journal of

Operational Research, Vol.163, No.3(2005),

pp.721-732.

[19] Ohno, K. and T. Ishigaki, “A multi-item

continuous review inventory system with

compound Poisson demand,” Mathematical

Methods of Operations Research, Vol.53,

No.1(2001), pp.147-165.

[20] Rosenblatt, M.J. and H.L. Lee, “Economic

production cycles with imperfect production

processes,” IIE Transactions, Vol.18, No.1

(1986), pp.48-55.

[21] Silver, E.A., “A simple method of determin-

ing order quantities in joint replenishments

under deterministic demand,” Management

Science, Vol.22, No.12(1976), pp.1351-1361.

[22] Silver, E.A., “A heuristic solution procedure

for the multi-item, single-level, limited ca-

pacity, lot-sizing problem,” Journal of Ope-

rations Management, Vol.2, No.1(1981), pp.

23-39.

[23] Silver, E.A., D.F. Pyke, and R. Peterson,

Inventory Management and Production Plan-

104 정원찬․김종수

ning and Scheduling, John Wiley, New York,

1998.

[24] Viswanathan, S., “Periodic review(s, S) pol-

icies for joint replenishment inventory sys-

tems,” Management Science, Vol.43, No.10

(1997), pp.1447-1454.

[25] Viswanathan, S., “On optimal algorithms for

the joint replenishment problem,” The Jour-

nal of the Operational Research Society,

Vol.53, No.11(2002), pp.1286-1290.

확률적 수요를 갖는 단일구매자와 단일공급자 시스템의 다품목 통합발주문제 1 105

<Appendix A> Convexity of the Cost Function in (12)

Hessian matrix of the buyer’s expected cost function in (12) is





 

 










 





.

All the elements except (1, 1)th element of the Hessian matrix are nonnegative. Thus, if the (1,

1)th element is nonnegative, which holds for many cases with parameter values in reasonable ranges,

the buyer’s cost function is convex.

<Appendix B> Convexity of the Cost Function in (21)

Taking the second-order partial derivative of (21) with respect to  , we obtain

 


   


  ,

 



 


  ≥.

Thus, the total cost function,  , is a convex function with respect to  for given values

of other parameters.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

