DOI QR코드

DOI QR Code

Trend and Prospect of Thin Film Processing Technology

박막제조 기술의 동향과 전망

  • Jeong, Jae-In (Hybrid Materials Research Department, Research Institute of Industrial Science and Technology) ;
  • Yang, Ji-Hooon (Hybrid Materials Research Department, Research Institute of Industrial Science and Technology)
  • 정재인 (포항산업과학연구원 융합소재연구본부) ;
  • 양지훈 (포항산업과학연구원 융합소재연구본부)
  • Received : 2011.09.29
  • Accepted : 2011.10.17
  • Published : 2011.10.31

Abstract

The technique of producing thin film plays a crucial role in modern science and technology as well as in industrial purposes. Numerous efforts have been made to get high quality thin film through surface treatment of materials. PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) are two of the most popular deposition techniques used in both scientific study and industrial use. It is well known that the film deposited by PVD and CVD commonly possesses a columnar microstructure which affects many film properties. In recent years, various types of deposition sources which feature high material uses and excellent film properties have been developed. Electromagnetic levitation source appeared as an alternative deposition source to realize high deposition rate for industrial use. Complex film structures such as nano multilayer and multi-components have been prepared to achieve better film properties. Glancing angle deposition (GLAD) has also been developed as a technique to engineer the columnar structure of thin films on the micro- and nanoscale. In this paper, the trends and major issues of thin film technology based on PVD and CVD have been discussed together with the prospect of thin film technology.

박막제조 기술은 과학 기술의 기초가 되는 분야로 양질의 박막을 제조하기 위한 다양한 노력이 경주되고 있다. 박막제조는 표면개질과 함께 표면처리 기술의 한 분야이며 이중 진공증착으로 알려진 물리증착법과 화학증착법은 현대의 과학기술 연구는 물론 산업적으로 폭넓게 이용되는 박막제조 기술 중의 하나이다. 진공증착을 이용한 박막제조 기술은 나노 기술의 등장과 함께 비약적인 발전을 이루었으며 자연모사와 완전화 박막의 제조, 융복합 공정을 이용한 기능성 코팅과 Engineered Structure 구현 그리고 초고속 증착과 원가 저감 기술의 실현이 주요 이슈로 등장하고 있다. 본 논문에서는 물리증착법과 화학증착법을 중심으로 박막제조 기술의 종류와 원리를 설명하고 박막제조 기술의 최신 동향과 기술적 이슈 및 향후 전망에 대해 기술한다.

Keywords

References

  1. P. M. Martin, Handbook of Deposition Technologies for Films and Coatings, Elsevier, Amsterdam (2005), Chap. 4.
  2. R. F. Bunshah, Handbook of Deposition Technologies for Films and Coatings, 2nd Ed. Noyes Publications, Berkshire (1994), Chap. 4.
  3. B. A. Movchan and A. V. Demchishin, Phys. Met. Metallogr. 28, 83 (1969).
  4. J. A. Thornton, Ann. Rev. Mater. Sci. 7, 239 (1977).
  5. P. B. Barna and M. Adamik, Thin Solid Films 317, 27 (1998). https://doi.org/10.1016/S0040-6090(97)00503-8
  6. S. R. Pulugurtha, et al., Surf. Coat. Technol. 202, 755 (2007). https://doi.org/10.1016/j.surfcoat.2007.05.071
  7. A. Anders, Thin Solid Films 518, 4087 (2010). https://doi.org/10.1016/j.tsf.2009.10.145
  8. J. J. Steele and M. J. Brett, J. Mater. Sci: Mater. Electron 18, 367 (2007).
  9. M. M. Hawkeye and M. J. Brett, J. Vac. Sci. Technol. A 25, 1317 (2007). https://doi.org/10.1116/1.2764082
  10. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, Rev. Sci. Instrum. 75, 1089 (2004). https://doi.org/10.1063/1.1667254
  11. Vacuum Evaporation Sources, catalogue by R. D. Mattis Company, Long Beach, California, U.S.A. (1989).
  12. Vacuum Evaporation Sources, catalogue by Jori Resources Corp., Ventura, California, U.S.A. (1989).
  13. Evaporation Sources, catalogue by Vac's Metal Corp., Tokyo, Japan (1989).
  14. http://www.lesker.com/newweb/FrameSets/Frameset_Evaporation_Sources.cfm.
  15. Evaporation Sources and Crucibles, Catalogue by PLANSEE Corp., 715 DE.01.01 (2000) RWF.
  16. 정재인, 양지훈, 박혜선, 정재훈, 송민아, 한국표면공학회지 44, 155 (2011).
  17. W. M. Posadowski, Vacuum 46, 1017 (1995). https://doi.org/10.1016/0042-207X(95)00096-8
  18. B. Window and N. Savvides, J. Vac. Sci. Technol. A4, 196 (1986).
  19. B. Window and N. Savvides, J. Vac. Sci. Technol. A4, 453 (1986).
  20. V. Kouznetsov, K. Macak, J. M. Schneider, U. Hlemerson, and I. Petrov, Surf. Coat. Technol. 122, 290 (1999). https://doi.org/10.1016/S0257-8972(99)00292-3
  21. B. L. Halpern, J. Colloid Interface Sci. 86, 337 (1982). https://doi.org/10.1016/0021-9797(82)90078-9
  22. B. L. Hlpern and J. J. Schmit, J. Vac. Sci. Technol. A12, 1623 (1994).
  23. B. Schmitz, Steel Research 72, 522 (2001). https://doi.org/10.1002/srin.200100162
  24. J. F. Groves, G. Mattausch, H. Morgner, D. D. Hass, and H. N. G. Wadley, Surf. Eng. 16, 461 (2000).
  25. C. Donnet and A. Erdemir, Surf. Coat. Technol. 180-181, 76 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.022
  26. A. Ozturk, K. V. Ezirmik, K. Kazmanli, M. Urgen, O. L. Eryilmaz, and A. Erdemir, Tribology International 41, 49 (2008). https://doi.org/10.1016/j.triboint.2007.04.008
  27. V. Ezirmik, E. Senel, K. Kazmanli, A. Erdemir, and M. Urgen, Surf. Coat. Technol. 202, 866 (2007). https://doi.org/10.1016/j.surfcoat.2007.05.049
  28. Y. J. Kwak, T. Y. Kim, D. Y. Lee, K. H. Nam, Y. H. Jung, W. S. Jung, M. J. Eom, and S. J. Hong, Proc. GALVATECH 2, 1163 (2011).
  29. L. Baptiste, N. Landschoot, G. Gleijm, J. Priede, J. S. Westrum, H. Velthuis, and T. Y. Kim, Surf. Coat. Technol. 202, 1189 (2007). https://doi.org/10.1016/j.surfcoat.2007.05.075

Cited by

  1. Development and Analysis of Graphene Oxide Thin Film Coating vol.39, pp.5, 2015, https://doi.org/10.3795/KSME-B.2015.39.5.463