DOI QR코드

DOI QR Code

Imipramine enhances neuroprotective effect of PEP-1-Catalase against ischemic neuronal damage

  • Kim, Dae-Won (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Duk-Soo (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Kim, Mi-Jin (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kwon, Soon-Won (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Ahn, Eun-Hee (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Jeong, Hoon-Jae (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Sohn, Eun-Jeong (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Dutta, Suman (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Lim, Soon-Sung (Department of Food Science and Nutrition & RIC Center, Hallym University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Lee, Kil-Soo (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Eum, Won-Sik (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Hwang, Hyun-Sook (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University)
  • Received : 2011.02.21
  • Accepted : 2011.03.19
  • Published : 2011.10.31

Abstract

The protein transduction domains have been reported to have potential to deliver the exogenous molecules, including proteins, to living cells. However, poor transduction of proteins limits therapeutic application. In this study, we examined whether imipramine could stimulate the transduction efficiency of PEP-1 fused proteins into astrocytes. PEP-1-catalase (PEP-1-CAT) was transduced into astrocytes in a time- and dose-dependent manner, reducing cellular toxicity induced by $H_2O_2$. Additionally, the group of PEP-1-CAT + imipramine showed enhancement of transduction efficiency and therefore increased cellular viability than that of PEP-1-CAT alone. In the gerbil ischemia models, PEP-1-CAT displayed significant neuroprotection in the CA1 region of the hippocampus. Interestingly, PEP-1-CAT + imipramine prevented neuronal cell death and lipid peroxidation more markedly than PEP-1-CAT alone. Therefore, our results suggest that imipramine can be used as a drug to enhance the transduction of PEP-1 fusion proteins to cells or animals and their efficacies against various disorders.

Keywords

References

  1. Koenitzer, J. R. and Freeman, B. A. (2010) Redox signaling in inflammation: interactions of endogenous electrophilies and mitochondria in cardiovascular disease. Ann. N. Y. Acad. Sci. 1203, 45-52. https://doi.org/10.1111/j.1749-6632.2010.05559.x
  2. Bickers, D. R. and Athar, F. D. M. (2006) Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126, 2565-2575. https://doi.org/10.1038/sj.jid.5700340
  3. Mates, J. M. (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicol. 83, 83-104.
  4. Muzykantov, V. R. (2001) Targeting of superoxide dismutase and catalase to vascular endothelium. J. Control. Release 71, 1-21. https://doi.org/10.1016/S0168-3659(01)00215-2
  5. Kim, D. W., Jeong, H. J., Kang, H. W., Shin, M. J., Sohn, E. J., Kim, M. J., Ahn, E. H., An, J. J., Jang, S. H., Yoo, K. Y., Won, M. H., Kang, T. C., Hwang, I. K., Kwon, O. S., Cho, S. W., Park, J., Eum, W. S. and Choi, S. Y. (2009) Transduced human PEP-1-catalase fusion protein attenuates ischemic neuronal damage. Free Radic. Biol. Med. 47, 941-952. https://doi.org/10.1016/j.freeradbiomed.2009.06.036
  6. Eum, W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., Park, J., Kwon, H. Y. and Choi, S. Y. (2004) HIV-1 Tat-mediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic beta cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349. https://doi.org/10.1016/j.freeradbiomed.2004.04.036
  7. Ahn, E. H., Kim, D. W., Kang, H. W., Shin, M. J., Won, M. H., Kim, J., Kim, D. J., Kwon, O. S., Kang, T. C., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2010) Transduced PEP-1-ribosomal protein S3 (rpS3) ameliorates 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Toxicol. 276, 192-197. https://doi.org/10.1016/j.tox.2010.08.004
  8. Egleton, R. D. and Davis, T. P. (1997) Bioavailability and transport of peptides and peptide drugs into the brain. Peptides 18, 1431-1439. https://doi.org/10.1016/S0196-9781(97)00242-8
  9. Behlke, M. A. (2008) Chemical modification of siRNAs for in vivo use. Oligonucleotides 18, 305-320. https://doi.org/10.1089/oli.2008.0164
  10. Dietz, G. P. (2010) Cell-penetrating peptide technology to deliver chaperones and associated factors in diseases and basic research. Curr. Pharm. Biotechol. 11, 167-174. https://doi.org/10.2174/138920110790909731
  11. Matsui, H., Tomizawa, K., Lu, Y. F. and Matsushita, M. (2003) Protein therapy: in vivo protein transduction by polyarginine (11R) PTD and subcellular targeting delivery. Curr. Protein Pept. Sci. 4, 151-157. https://doi.org/10.2174/1389203033487270
  12. Prochiantz, J. (2000) Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406. https://doi.org/10.1016/S0955-0674(00)00108-3
  13. Schwarze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. F. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569-1572. https://doi.org/10.1126/science.285.5433.1569
  14. Schwarze, S. R., Hruska, K. A. and Dowdy, S. F. (2000) Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. 10, 290-295. https://doi.org/10.1016/S0962-8924(00)01771-2
  15. Wadia, J. S. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56. https://doi.org/10.1016/S0958-1669(02)00284-7
  16. Wadia, J. S. and Dowdy, S. F. (2003) Modulation of cellular function by TAT mediated transduction of full length proteins. Curr. Protein Pept. Sci. 4, 97-104. https://doi.org/10.2174/1389203033487289
  17. Peng, C. H., Chiou, S. H., Chen, S. J., Chou, Y. C., Ku, H. H., Cheng, C. K., Yen, C. J., Tsai, T. H., Chang, Y. L. and Kao, C. L. (2008) Neuroprotection by Imipramine against lipopolysaccharide-induced apoptosis in hippocampusderived neural stem cells mediated by activation of BDNF and the MAPK pathway. Eur. Neuropsychopharmacol. 18, 128-140. https://doi.org/10.1016/j.euroneuro.2007.05.002
  18. Keilhoff, G., Becker, A., Grecksch, G., Bernstein, H. G. and Wolf, G. (2006) Cell proliferation is influenced by bulbectomy and normalized by imipramine treatment in a region-specific manner. Neuropsychopharmacol. 31, 1165-1176. https://doi.org/10.1038/sj.npp.1300924
  19. Schiavon, A. P., Milani, H., Romanini, C. V., Foresti, M. L., Castro, O. W., Garcia-Cairasco, N. and de Oliveira, R. M. (2010) Imipramine enhances cell proliferation and decreases neurodegeneration in the hippocampus after transient global cerebral ischemia in rats. Neurosci. Lett. 470, 43-48. https://doi.org/10.1016/j.neulet.2009.12.052
  20. Abdel-Salam, I. M., Nofal, S. M. and El-Shenawy, S. M. (2003) Evaluation of the anti-inflammatory and anti-nociceptive effects of different antidepressants in the rat. Pharmacol. Res. 48, 157-165. https://doi.org/10.1016/S1043-6618(03)00106-3
  21. Hashioka, S., Klegeris, A., Monji, A, Kato, T., Sawada, M., McGeer, P. L. and Kanba, S. (2007) Antidepressants inhibit interferon-gamma-induced microglial production of IL-6 and nitric oxide. Exp. Neurol. 206, 33-42. https://doi.org/10.1016/j.expneurol.2007.03.022
  22. Hwang, J., Zheng, L. T., Ock, J., Lee, M. G., Kim, S. H., Lee, H. W., Lee, W. H., Park, H. C. and Suk, K. (2008) Inhibition of glial inflammatory activation and neurotoxicity by tricyclic antidepressants. Neuropharmacol. 55, 826-834. https://doi.org/10.1016/j.neuropharm.2008.06.045
  23. Wang, H., Zhong, C. Y., Wu, J. F., Hunag, Y. B. and Liu, C. B. (2010) Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide. J. Control. Rel. 143, 64-70. https://doi.org/10.1016/j.jconrel.2009.12.003
  24. Lee, S. H., Jeong, H. J., Kim, D. W., Sohn, E. J., Kim, M. J., Kim, D. S., Kang, T. C., Lim, S. S., Kang, I. J., Cho, S. W., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2010) Enhancement of HIV-1 Tat fusion protein transduction efficiency by bog blueberry anthocyanins. BMB Rep. 43, 561-566. https://doi.org/10.5483/BMBRep.2010.43.8.561
  25. Zhang, D. L., Zhang, Y. T., Yin, J. J. and Zhao, B. L. (2004) Oral administration of Crataegus flavonoids protects against ischemia/reperfusion brain damage in gerbils. J. Neurochem. 90, 211-219. https://doi.org/10.1111/j.1471-4159.2004.02480.x
  26. Xia, Z., DePierre, J. W. and Nässberger, L. (1996) Tricyclic antidepressants inhibit IL-6, IL-1 beta and TNF-alpha release in human blood monocytes and IL-2 and interferon- gamma in T cells. Immunopharmacol. 34, 27-37. https://doi.org/10.1016/0162-3109(96)00111-7
  27. Kuroda, Y. and Saito, M. (2010) Prediction of phospholipidosis- inducing potential of drugs by in vitro biochemical and physicochemical assays followed by multivariate analysis. Toxicol. In Vitro 24, 661-668. https://doi.org/10.1016/j.tiv.2009.09.018
  28. Vistica, D. T., Skehan, P., Scudiero, D., Monks, A., Pittman, A. and Boyd, M. R. (1991) Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 51, 2515-2520.
  29. Ahang, D. L., Zhang, Y. T., Yin, J. J. and Zhao, B. L. (2004) Oral administration of Crataegus flavonoids protects against ischemia/reperfusion brain damage in gerbils. J. Neurochem. 90, 211-219. https://doi.org/10.1111/j.1471-4159.2004.02480.x

Cited by

  1. Neuroprotective effects of the antioxidant action of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against ischemic neuronal damage in the brain vol.46, pp.7, 2013, https://doi.org/10.5483/BMBRep.2013.46.7.018
  2. PEP-1-MsrA ameliorates inflammation and reduces atherosclerosis in apolipoprotein E deficient mice vol.13, pp.1, 2015, https://doi.org/10.1186/s12967-015-0677-8
  3. Pre-treatment with Chrysanthemum indicum Linné extract protects pyramidal neurons from transient cerebral ischemia via increasing antioxidants in the gerbil hippocampal CA1 region vol.16, pp.1, 2017, https://doi.org/10.3892/mmr.2017.6591
  4. Effect of alpha lipoic acid on ifosfamide-induced central neurotoxicity in rats vol.124, pp.2, 2014, https://doi.org/10.3109/00207454.2013.823962
  5. Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils vol.47, pp.3, 2014, https://doi.org/10.5115/acb.2014.47.3.149
  6. Putative neuroprotective agents in neuropsychiatric disorders vol.42, 2013, https://doi.org/10.1016/j.pnpbp.2012.11.007