DOI QR코드

DOI QR Code

Discharge and Luminous Characteristics of Coplanar Type Xe Plasma Flat Lamp

면방전형 Xe 플라즈마 평판 램프의 방전 및 발광 특성

  • Kim, Hyuk-Hwan (Department of Materials Science and Engineering, KAIST) ;
  • Lee, Won-Jong (Department of Materials Science and Engineering, KAIST)
  • 김혁환 (한국과학기술원 신소재공학과) ;
  • 이원종 (한국과학기술원 신소재공학과)
  • Received : 2011.08.13
  • Accepted : 2011.09.14
  • Published : 2011.10.27

Abstract

The Xe plasma flat lamp, considered to be a new eco-friendly LCD backlight, requires a further improvement of its luminance and luminous efficiency. To improve the performance of this type of lamp, it is necessary to understand the effects of the discharge variables on the luminous characteristics of the lamp. In this study, the luminous characteristics of a coplanartype Xe plasma flat lamp with a teeth-type electrode pattern were analyzed while varying the gas composition, gas pressure and input voltage. The effects of the phosphor layer on the discharge and the luminous characteristics of the lamp were also studied. The luminous efficiency of the coplanar-type Xe plasma flat lamp improved as the Xe input ratio and gas pressure increased. Higher luminous efficiency was also obtained when helium (He) was used as a buffer gas and when a phosphor layer was fabricated on the electrode region. In contrast, the luminous efficiency was reduced with increasing the input voltage. It was found that the infrared emissions from the lamp were affected by the Xe excitation rate in the plasma, the Xe gas density, the collisional quenching of excited Xe species by gas molecules, and the recombination rate between the Xe ions and electrons.

Keywords

References

  1. H. Motomura, K. Oka, T. Sogabe and M. Jinno, J. Phys. Appl. Phys., 44, 224013 (2011). https://doi.org/10.1088/0022-3727/44/22/224013
  2. Z. Liu, W. B. Hu and C. L. Liu, IEEE Trans. Plasma Sci., 38, 2860 (2010). https://doi.org/10.1109/TPS.2010.2064339
  3. H. Kashiwazaki, T. Kajiwara, H. Fujita and Y. Ohtsu, J. Light Vis. Environ., 34, 10 (2010). https://doi.org/10.2150/jlve.34.10
  4. S. J. Park, J. D. Readle, A. J. Price, J. K. Yoon and J. G. Eden, J. Phys. Appl. Phys. 40, 3907 (2007) https://doi.org/10.1088/0022-3727/40/13/S10
  5. F. Volkommer and L. Hitzschke, in Proceedings of 8th International Symposium on the Science and Technology of Light Source (Greifswald, Germany, August 1998), ed. G. Babucke (Greifswald, INP, 1998) p.51.
  6. H. B. Park, K. Y. Kim, J. H. Hong, Y. J. Lee, H. Hatanaka, Y. M. Kim and S. J. Im, SID 2002 International Symposium Digest of Technical Papers, (publisher: Society for Information Display, San Jose, USA, 2002) p.1138.
  7. M. G. Kwak, J. I. Han, Y. H. Kim, S. K. Park, D. K. Lee and S. H. Sohn, IEEE Trans. Plasma Sci., 31, 176 (2003). https://doi.org/10.1109/TPS.2003.808867
  8. T. Shiga, S. Mikoshiba and S. Shinada, Electron. Comm. Jpn., 84(8), 55 (2001). https://doi.org/10.1002/ecja.1047.abs
  9. J. Hur, T. Kim and S. Lim, SID 2000 International Symposium Digest of Technical Papers, (publisher: Society for Information Display, San Jose, USA, 2000) p.1033.
  10. S. E. Lee, H. N. Lee, H. B. Park, K. S. Lee and K. C. Choi, J. Appl. Phys., 98, 093306 (2005). https://doi.org/10.1063/1.2127121
  11. T. Shiga, S. Mikoshiba, F. L. Curzon and S. Shinada, Rev. Sci. Instrum., 69, 3426 (1998). https://doi.org/10.1063/1.1149110
  12. Y. M. Li, C. L. Chen and H. B. Hsu, IEEE Trans. Electron Dev., 50, 913 (2003). https://doi.org/10.1109/TED.2003.812092
  13. SIGLO database retrieved Aug. 10, 2011 from http://www. siglo-kinema.com/database/index.htm
  14. R. Ganter and M. Cappelli, J. Appl. Phys., 94, 2145 (2003). https://doi.org/10.1063/1.1590406
  15. H. D. Hagstrum, Phys. Rev., 96, 336 (1954) https://doi.org/10.1103/PhysRev.96.336
  16. J. Y. Lim, J. S. Oh, B. D. Ko, J. W. Cho, S. O. Kang, G. Cho, H. S. Uhm and E. H. Choi, J. Appl. Phys., 94, 764 (2003) https://doi.org/10.1063/1.1581376
  17. S. Rauf and M. J. Kushner, J. Appl. Phys., 85, 3460 (1999). https://doi.org/10.1063/1.369703
  18. S. Rauf and M. J. Kushner, J. Appl. Phys., 85, 3470 (1999). https://doi.org/10.1063/1.369704
  19. G. Oversluize, S. de Zwart, S. van Heusden and T. Dekker, SID Journal, 8, 197 (2000).
  20. R. P. Mildren, R. J. Carman and I. S. Falconer, J. Phys. Appl. Phys., 34, 3378 (2001). https://doi.org/10.1088/0022-3727/34/23/309
  21. G. Di Stefano, M. Lenzi, A. Margani and C. N. Xuan, J. Chem. Phys., 74, 1552 (1981). https://doi.org/10.1063/1.441295
  22. G. Di Stefano, M. Lenzi, A. Margani and C. N. Xuan, Optic. Comm., 27, 85 (1978). https://doi.org/10.1016/0030-4018(78)90179-7
  23. J. Xu and D. W. Setser, J. Chem. Phys., 94, 4243 (1991). https://doi.org/10.1063/1.460610
  24. R. Wendt and H. Lange, J. Phys. Appl. Phys., 31, 3368 (1998). https://doi.org/10.1088/0022-3727/31/23/010
  25. A. F. Borghesani, G. Bressi, G. Carugno, E. Conti and D. Iannuzzi, J. Chem. Phys., 115, 6042 (2001). https://doi.org/10.1063/1.1398307