DOI QR코드

DOI QR Code

Microstructure and Compositional Distribution of Selenized Cu(In,Ga)Se2 Thin Film Utilizing Cu2In3, CuGa and Cu2Se

Cu2In3, CuGa, Cu2Se를 이용한 전구체박막을 셀렌화하여 제조한 Cu(In,Ga)Se2 박막의 미세구조 및 농도분포 변화

  • 이종철 (한국과학기술원 신소재공학과) ;
  • 정광선 (한국과학기술원 신소재공학과) ;
  • 안병태 (한국과학기술원 신소재공학과)
  • Received : 2011.06.27
  • Accepted : 2011.09.22
  • Published : 2011.10.27

Abstract

A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used $Cu_2In_3$, CuGa and $Cu_2Se$ sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of $Cu_2In_3$, CuGa and $Cu_2Se$ showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and $Cu_2Se$ phases. After selenization at $550^{\circ}C$ for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin $Cu_2Se$ layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.

Keywords

References

  1. T. J. Park, D. H. Shin, B. T. Ahn and J. H. Yun, Kor. J. Mater Res., 19(8), 452 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.8.452
  2. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. -J. Haug, M. Kalin, D. Rudmann and A. N. Tiwari, Prog. Photovoltaics, 12, 93 (2004). https://doi.org/10.1002/pip.527
  3. M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, A. Swartzlander and M. M. Al-Jassim, J. Appl. Phys., 82, 2896 (1997). https://doi.org/10.1063/1.366122
  4. M. S. Kim, R. B. V. Chalapathy, K. H. Yoon, and B. T. Ahn, J. Electrochem. Soc., 157, B154 (2010). https://doi.org/10.1149/1.3258660
  5. M. E. Beck, A. Swartzlander-Guest, R. Matson, J. Keane and R. Noufi, Sol. Energ. Mater. Sol. Cell., 64, 135 (2000). https://doi.org/10.1016/S0927-0248(00)00066-0
  6. V. Alberts, Semicond. Sci. Tech., 19, 65 (2004). https://doi.org/10.1088/0268-1242/19/1/011
  7. G. S. Jung, Y. M. Shin, Y. H. Cho, J. H. Yun and B. T. Ahn, Kor. J. Mater Res., 20(8), 434 (2010) (in Korean).. https://doi.org/10.3740/MRSK.2010.20.8.434
  8. K. H. Kim, K. H. Yoon, J. H. Yun and B. T. Ahn, Electrochem. Solid State Lett., 9, A382 (2006). https://doi.org/10.1149/1.2208011
  9. R. Klenk, T. Walter, H. W. Schock and D. Cahen, Adv. Mater., 5, 114 (1993). https://doi.org/10.1002/adma.19930050209
  10. J. R. Tuttle, M. A. Contreras, A. Tennant, D. Albin and R. Noufi, in Proceedings of the 23rd Photovoltaic Specialists Conference (New York, NY, May, 1993) p. 415.
  11. J. S. Park, Z. Dong, S. Kim and J. H. Perepezko, J. Appl. Phys., 87, 3683 (2000). https://doi.org/10.1063/1.372400
  12. S. Jung, S. J. Ahn, J. H. Yun, J. Gwak, D. Kim and K. Yoon, Curr. Appl. Phys., 10, 990 (2010). https://doi.org/10.1016/j.cap.2009.11.082