DOI QR코드

DOI QR Code

Improved Mechanical Properties of Cross Roll Rolled Ni-Cr Alloy

교차롤압연된 Ni-Cr 합금의 기계적 특성 발달

  • 송국현 (한국생산기술연구원 융합신공정 연구그룹) ;
  • 김대근 (한국생산기술연구원 동력부품 연구그룹) ;
  • 손현택 (한국생산기술연구원 동력부품 연구그룹) ;
  • 이해진 (한국생산기술연구원 융합신공정 연구그룹) ;
  • 김한솔 (한국생산기술연구원 융합신공정 연구그룹) ;
  • 김원용 (한국생산기술연구원 융합신공정 연구그룹)
  • Received : 2011.09.26
  • Accepted : 2011.09.24
  • Published : 2011.10.27

Abstract

We carried out this study to evaluate the grain refining in and the mechanical properties of alloys that undergo severe plastic deformation (SPD). Conventional rolling (CR) and cross-roll rolling (CRR) as SPD methods were used with Ni-20Cr alloy as the experimental material. The materials were cold rolled to a thickness reduction of 90% and subsequently annealed at $700^{\circ}C$ for 30 min to obtain a fully recrystallized microstructure. For the annealed materials after the cold rolling, electron back-scattered diffraction (EBSD) analysis was carried out to investigate the grain boundary characteristic distributions (GBCDs). The CRR process was more effective when used to develop the grain refinement relative to the CR process; as a result, the grain size was refined from $70{\mu}m$ in the initial material to $4.2{\mu}m$ (CR) and $2.4{\mu}m$ (CRR). These grain refinements have a direct effect on improving the mechanical properties; in this case, the microhardness, yield and tensile strength showed significant increases compared to the initial material. In particular, the CRR-processed material showed more effective values relative to the CR-processed materials. The different texture distributions in the CR (001//ND) and CRR (111//ND) were likely the cause of the increase in the mechanical properties. These findings suggest that CRR can result in materials with a smaller grain size, improved texture development and improved mechanical properties after recrystallization by a subsequent annealing process.

Keywords

References

  1. Y. Chino, K. Sassa, A. Kamiya and M. Mabuchi, Mater. Sci. Eng., 441, 349 (2006). https://doi.org/10.1016/j.msea.2006.08.038
  2. Y. Chino, K. Sassa, A. Kamiya and M. Mabuchi, Mater. Sci. Eng., 473, 195 (2007).
  3. K. Neishi, Z. Horita and T. G. Langdon, Mater. Sci. Eng., 325, 54 (2002). https://doi.org/10.1016/S0921-5093(01)01404-6
  4. S. Komura, Z. Horita, M. Nemoto and T. G. Langdon, J. Mater. Res., 14, 4044 (1999). https://doi.org/10.1557/JMR.1999.0546
  5. K. S. Raju, M. G. Krishna, K. A. Padmanabhan, K.Muraleedharan, N. P. Gurao and G. Wilde, Mater. Sci. Eng., 491, 1 (2008). https://doi.org/10.1016/j.msea.2007.11.072
  6. A. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev and T. G. Langdon, Scripta Mater., 44, 2753 (2001). https://doi.org/10.1016/S1359-6462(01)00955-1
  7. S. H. Lee, J. Y. Lim, D. Y. Yoon, K. J. Euh and S. Z. Han, Kor. J. Mater. Res., 21(1), 15 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.1.015
  8. R. Meyer and L. J. Lewis, Phys. Rev. B, 66, 052106 (2002). https://doi.org/10.1103/PhysRevB.66.052106
  9. R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., p.247, PWS, Boston, USA (2002).
  10. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, p. 178, Elsevier, Oxford, UK (1996).
  11. P. van Houtte, in Proceedings of International Conferences of Textures of Materials (Noordwijkerhout, Netherlands, September 1984), ed. C. M. Brakman, P. Jongenburger and E. J. Mittemeijer (Netherlands Society for Materials Science, Zwijndrecht, Netherlands, 1984), p.7-23.
  12. J. J. Nah, H. G. Kang, M. Y. Huh and O. Engler, Scripta Mater., 58, 500 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.049