DOI QR코드

DOI QR Code

Robust Design of a Dynamic System Using a Probabilistic Design Method

확률적 설계 방법을 이용한 동적 시스템의 강건 설계

  • Ryu, Jang-Hee (Dept. of Mechanical & Automotive Engineering, Andong Nat'l Univ.) ;
  • Choi, In-Sang (Dept. of Ammunition System, Hanwha Corporation R&D Center) ;
  • Kim, Joo-Sung (Dept. of Ammunition System, Hanwha Corporation R&D Center) ;
  • Son, Young-Kap (Dept. of Mechanical & Automotive Engineering, Andong Nat'l Univ.)
  • 류장희 (안동대학교 기계자동차공학과) ;
  • 최인상 ((주)한화 종합연구소 체계2실) ;
  • 김주성 ((주)한화 종합연구소 체계2실) ;
  • 손영갑 (안동대학교 기계자동차공학과)
  • Received : 2011.08.18
  • Accepted : 2011.08.09
  • Published : 2011.10.01

Abstract

This paper shows the robust design results of an actuator, a kind of dynamic system. Variations in the components comprising the actuator cause uncertainties in the system's dynamic performance. Therefore, a probabilistic design method is applied to ensure robust actuator performance to component variation. A Simulink model for the actuator was built using transfer functions for the components. The dynamic responses of the actuator were evaluated using the Simulink model. Performance indexes were approximated as quadratic functions of the design parameters through the application of the response surface methodology (RSM) with the Simulink model. Then, a probabilistic design method was applied to the approximated performance indexes to obtain optimal design parameters that would provide robust actuator performance. The optimal design was compared to the present design in terms of the performance indexes and dynamic response characteristics over time.

본 논문은 동적 시스템인 구동기의 강건설계를 수행한 결과를 제시한다. 구동기를 구성하는 부품들의 변량은 구동기의 성능에 변량을 유발한다. 따라서 부품들의 변량에 둔감한 구동기의 성능을 확보하기 위해 구동기에 대해서 강건설계를 수행하였다. 구동기를 구성하는 부품들을 전달함수로 표현하여 시뮬링크 모델로 구축하였으며, 시뮬링크 모델을 이용하여 설계 변수 조합에 따른 구동기의 응답을 얻었다. 또한 반응표면법을 적용하여 구동기의 응답을 설계 변수들의 2차 함수로 근사화하였다. 구동기응답을 출력으로 하는 근사화된 모델에 확률적 설계방법을 적용하여 강건한 구동기의 성능을 위한 최적 설계변수를 결정하고 기존 설계와 비교한 결과를 제시하였다.

Keywords

References

  1. Massey, K. C., Heiges, M. W., DiFrancesco, B., Ender, T. R., and Mavris, D. N., 2006, "A System-of-Systems Design of a Guided Projectile Mortar Defense System," 24th Applied Aerodynamics conference, SanFrancisco, California.
  2. Crespo, L. G. and Kenny, S. P., 2005, "Robust Control Design for Systems with Probabilistic Uncertainty, Langley Research Center at National Institute of Aerospace," Hampton, Virginia (NASA/TP-2005-213531).
  3. Savage, G. J. and Son, Y. K., 2008, "Design-for-Six-Sigma for Multiple Response Systems," International Journal of Product Development(Special Issue on building reliability into products during the product development process), 5(1/2), pp. 39-53
  4. Seecharan, T. S., 2007, "Probabilistic Robust Design for Dynamic Systems Using Metamodelling," Master Thesis, Univ. of Waterloo.
  5. Siouris, G. M., 2003, "Missile Guidance and Control Systems," Springer-Verlag.
  6. Pillay, P. and Krishnan, R., 1989, "Modeling, Simulation, and Analysis of Permanent-Magnet Motor Drives, Part II: The Brushless DC Motor Drive," IEEE Transactions on Industry Applications, Vol. 25, No. 2, pp. 274-279. https://doi.org/10.1109/28.25542
  7. Juvinall, R. C. and Marshek, K. M., 2003, "Fundamentals of Machine Component Design," 3th Edition, Wiley.
  8. Yeh, T.-J. and Wu, F.-K., 2009, "Modeling and Robust Control of Worm-Gear Driven Systems," Simulation Modelling Practice and Theory, Vol. 17 (5), pp. 767-777. https://doi.org/10.1016/j.simpat.2009.01.002
  9. Son, Y.K., 2010, "Derating Design for Improving System Reliability by Using a Probabilistic Approach," Transactions of the KSME A, Vol. 34, No. 6, pp. 743-749. https://doi.org/10.3795/KSME-A.2010.34.6.743

Cited by

  1. Conformance-Based Dynamic Performance Optimization of an Actuator vol.36, pp.11, 2012, https://doi.org/10.3795/KSME-A.2012.36.11.1327