DOI QR코드

DOI QR Code

Effect of Cathodic Biofilm on the Performance of Air-Cathode Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Sung-Hyun (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2011.07.19
  • Accepted : 2011.08.15
  • Published : 2011.10.20

Abstract

Biofilm formation is inevitable in a bioelectrochemical system in which microorganisms act as a sole biocatalyst. Cathodic biofilm (CBF) works as a double-edged sword in the performance of the air-cathode microbial fuel cells (MFCs). Proton and oxygen crossover through the CBF are limited by the robust structure of extracellular polymeric substances, composition of available constituents and environmental condition from which the biofilm is formed. The MFC performance in terms of power, current and coulombic efficiency is influenced by the nature and origin of CBF. Development of CBF from different ecological environment while keeping the same anode inoculums, contributes additional charge transfer resistance to the total internal resistance, with increase in coulombic efficiency at the expense of power reduction. This study demonstrates that MFC operation conditions need to be optimized on the choice of initial inoculum medium that leads to the biofilm formation on the air cathode.

Keywords

References

  1. Fan, Y. Z.; Hu, H. Q.; Liu, H. J. Power Sources 2007, 171, 348. https://doi.org/10.1016/j.jpowsour.2007.06.220
  2. Stoodley, P.; Sauer, K.; Davies, D. G.; Costerton, J. W. Annu. Rev. Microbiol. 2007, 56, 187-209.
  3. Laspidou, C. S.; Rittmann, B. E. Water Res. 2004, 38, 3349. https://doi.org/10.1016/j.watres.2004.04.037
  4. Sutherland, I. W. Microbiol. 2001, 147, 3.
  5. Wingender, J.; Neu, T. R.; Flemming, H.-C. In Mirobial Extracellular Polymeric Substances: Characterization, Structure, and Function; Wingender, J., Neu, T. R., Flemming, H.-C., Eds.; Springer Verlag: Berlin, Germany, 1999; pp 1-19.
  6. Logan, B. E.; Hamelers, B.; Rozendal, R.; Scrorder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Environ. Sci. Technol. 2006, 40, 5181. https://doi.org/10.1021/es0605016
  7. Pham, H. T.; Aelterman, P.; Verstraete, W. Trends Biotechnol. 2009, 27, 168. https://doi.org/10.1016/j.tibtech.2008.11.005
  8. Zhang, X.; Cheng, S.; Wang, X.; Huang, X.; Logan, B. E. Environ. Sci. Technol. 2009, 43, 8456. https://doi.org/10.1021/es901631p
  9. Torres, C. I.; Marcus, K. A.; Rittmann, B. E. Biotechnol. Bioeng. 2008, 100, 872. https://doi.org/10.1002/bit.21821
  10. Cheng, S.; Liu, H.; Logan, B. E. Electrochem. Commun. 2006, 8, 489. https://doi.org/10.1016/j.elecom.2006.01.010
  11. Kim, J. R.; Cheng, S.; Oh, S. E.; Logan, B. E. Environ. Sci. Technol. 2007, 41, 1444. https://doi.org/10.1021/es061634u
  12. Cheng, S.; Liu, H.; Logan, B. E. Environ. Sci. Technol. 2006, 40, 364. https://doi.org/10.1021/es0512071
  13. Sharma, Y.; Li, B. Biores. Technol. 2010, 101, 1844. https://doi.org/10.1016/j.biortech.2009.10.040
  14. Mclean, S. J.; Wanger, G.; Gorby, A. Y.; Wainstein, M.; Mcquaid, J.; Ishii, I. S.; Bretschger, O.; Beyenal, H.; Nealson, H. K. Environ. Sci. Technol. 2010, 44, 2721. https://doi.org/10.1021/es903043p
  15. Gregory, K. B.; Lovley, D. R. Environ. Sci. Technol. 2005, 39, 8943. https://doi.org/10.1021/es050457e
  16. Gregory, K. B.; Bond, D. R.; Lovley, D. R. Environ. Mirobiol. 2004, 6, 596. https://doi.org/10.1111/j.1462-2920.2004.00593.x
  17. Clauwaert, P.; Rabaey, K.; Aeltrman, P.; De Schamphelaire, L.; Pham, T. H.; Boeckx, P.; Boon, N.; Verstraete, W. Environ. Sci. Technol. 2007, 41, 3355.
  18. Chung, K.; Fujiki, I.; Okabe, S. Birores. Technol. 2011, 102, 355. https://doi.org/10.1016/j.biortech.2010.04.091
  19. Oh, S. E.; Kim, J. R.; Joo, J. H.; Logan, B. E. Water Sci. Technol. 2009, 60, 1311. https://doi.org/10.2166/wst.2009.444

Cited by

  1. and Oxygen Transport in Microbial Fuel Cells vol.47, pp.9, 2013, https://doi.org/10.1021/es400045s
  2. 从废水中回收能量的微生物燃料电池技术: 走向实际应用的机遇和挑战 vol.15, pp.11, 2014, https://doi.org/10.1631/jzus.A1400277
  3. Oxygen barrier and catalytic effect of the cathodic biofilm in single chamber microbial fuel cells vol.93, pp.8, 2018, https://doi.org/10.1002/jctb.5561
  4. Embedded cobalt oxide nano particles on carbon could potentially improve oxygen reduction activity of cobalt phthalocyanine and its application in microbial fuel cells vol.4, pp.83, 2014, https://doi.org/10.1039/c4ra05940a
  5. Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review vol.39, pp.None, 2011, https://doi.org/10.1016/j.jes.2015.12.006
  6. Effectiveness of phase- and morphology-controlled MnO2 nanomaterials derived from flower-like δ-MnO2 as alternative cathode catalyst in microbial fuel cells vol.48, pp.16, 2019, https://doi.org/10.1039/c9dt00520j
  7. Real-Time Monitoring of Micro-Electricity Generation Through the Voltage Across a Storage Capacitor Charged by a Simple Microbial Fuel Cell Reactor with Fast Fourier Transform vol.12, pp.13, 2019, https://doi.org/10.3390/en12132610