DOI QR코드

DOI QR Code

Evaluation on the Greenhouse Gas Emission According to the Intake Levels of Total Mixed Rations of Hanwoo Cow

급여수준에 따른 한우 암소의 온실가스 배출량 평가

  • 김두리 (강원대학교 동물생명과학대학) ;
  • 하재정 (강원대학교 동물생명과학대학) ;
  • 김종택 (강원대학교 수의과대학) ;
  • 송영한 (강원대학교 동물생명과학대학)
  • Received : 2011.05.18
  • Accepted : 2011.09.23
  • Published : 2011.10.31

Abstract

This study was conducted to investigate the effects of different feeding level of TDN (Total Digestible Nutrients) on the generation of main greenhouse gases such as carbon dioxide and methane in Hanwoo cows. The diet TDN (kg) adjusted to achieve ADG of 0 g/day (Control), 200 g/day (T1), and 400 g/day (T2) of the maintenance level TMR (Total Mixed Ration) delivered twice a day at 08:30 and 17:30. Cow are housed in a respiration chamber and the environmental temperature was maintained at $20^{\circ}C$. The gases were measured for 24 hours using the multi-detector instrument Mamos-300. The analyzed methane emissions of T1 and T2 were 33.5% and 69.6% higher than control, respectively, and the carbon dioxide emissions were 21.1% and 40.6% higher than control. Also, the hourly pattern of carbon dioxide and methane production were showed very similar emission. Gas production showed peak after 1 hour of feeding and this gap was wider in the afternoon than in the morning hours. It is clearly conducted that $CO_2$ and $CH_4$ emissions were different by limited intake levels of feed.

최근 온실가스 감축에 관한 국제적인 관심이 대두되면서 반추가축의 가스발생을 조절하기 위한 연구가 다양하게 시도되고 있다. 본 실험은 섬유질배합사료를 TDN의 유지수준과 섭취수준별 가스 발생량의 증가 정도 및 절식시 감소량을 측정함으로써 반추위내 장내발효에 의한 호흡가스의 정확한 산출근거를 구명하고자 실시하였다. 실험은 43개월 령의 평균체중 $372{\pm}11.2$ kg의 Fistula가 장착된 한우 암소를 공시하여 한우사양표준(2007)에 의거하여 TDN (kg)유지수준의 성장, 200 g/일 및 400 g/일 증체수준으로 TMR 사료를 각각 2회에 걸쳐 급여하였으며 물과 mineral block은 자유 섭식하도록 하였다. 온실가스 측정은 NDIR (Non-dispersive infrared absorption) 센서를 이용한 가스다중검출기를 이용하여 이산화탄소 및 메탄가스를 측정하였으며, 호흡챔버 내 환경온도는 $20^{\circ}C$를 유지하였다. 실험결과 급이 수준별 TDN가가 높을수록 가스발생량이 증가하는 경향을 나타내었으며, 이산화탄소 발생량에서는 유지수준에 비해 200 g/일에서 21.1%, 400 g/일에서 40.6% 수준으로 가스 발생량을 나타내었다. 메탄 발생량은 유지수준에 비해 200 g/일에서 33.5%, 400 g/일에서 69.6% 수준의 가스발생량을 나타내었다. 또한 절식 대사시 3일차부터 이산화탄소 발생량은 8%와 51% 수준으로 급격한 감소를 보였으며 메탄발생량은 각각 15%와 37%의 감소를 나타내었다. 위 결과는 향후 축산분야의 온실가스를 줄이기 위한 사양체계 및 절식대사를 통해 한우의 장내발효에 의한 가스발생조절에 대한 연구의 기초자료로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Blaxter, K. L. and Clapperton, J. L. 1995. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19:511-522.
  2. Cao, Y., Takahashi T. and Horiguchi, K. I. 2009. Effects of addition of food by-products on the fermentation quality of a total mixed ration with whole crop rice and its digestibility, preference, and rumen fermentation in sheep. Anim. Feed Sci. Technol. 151:1-11. https://doi.org/10.1016/j.anifeedsci.2008.10.010
  3. Crutzen, P. J. 1995. The role of methane in at-mospheric chemistry and climate. In Ruminant phy-siology : digestion, metabolism, growth and re-production. ed. Engelhardt, W. V. p.291-315.
  4. Getachew, G., Blummel, M., Makkar, H. P. S. and Becker, K. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds : a review. Anim. Feed. Sci. Technol. 72:261-281. https://doi.org/10.1016/S0377-8401(97)00189-2
  5. Ha, J. J. and Song. Y. H.. 2009. Studies on the methane and carbon dioxide generation rates due to feeding different types of diets in hanwoo cattle. Institute of animal resources Kangwon national university. p.37-38.
  6. Hungate, R. E., Smith, W., Bauchop, T., Yu, I. and Rabinowitz, J. C. 1970. Formate as an intermediate in the bobine rumen fermentation. J. Bacteria. 102:389-397.
  7. Intergovernmental Panel on Climate Change. 2008. 2006 IPCC Guidelines for national greenhouse gas inventories. http://www.ipcc.ch
  8. Jeon, B. T and Minoru O. 1988. Variability of the rumination-behaviour in steers fed a constant amount of hay. J.Korean Grassl. Sci. 8(2):68-76.
  9. Johnson, D. E., Hill, T. M., Carmean, B. R., Branine, M. E., Lodman, D. W. and Ward, G. M.. 1993. Perspectives in ruminant methane emission. 1993 Beef Program Report. Dept. if Anim. Sci., Colorado State University, Fort Collins.
  10. Johnson, K. A. and Johnson, D. E. 1995. Methane emissions from cattle. J. Anim. Sci. 73, p.2483-2492.
  11. KirechgeBner, M. W. and Muller, H. L. 1994. Methane release from dairy cows and pigs. In : Proc. XIII. Symp. on Energy methabolism of farm animals. Ed. Aguilera, J. F. EAAPPubl. No. 76. CSIC, Spain
  12. Kim, B. K. 2000. A study on prediction of methane production from feed ingredients in the rumen. Konkuk University paper of master's degree.
  13. Korea Energy Economics Institute. 2003. Second National Communication of the Republic of Korea under the United Nations Framework Convention on climate change. http://www.keei.re.kr
  14. Kurihara, M., Shibata, M., Nishida, T., Purnomoadi, A. and Terada, F. 1997. Methane production and its dietary manipulation in ruminants. In: Onodera R, Itabashi H, ushida K, Yano H, Sasaki Y (eds), Rumen Microbes and Digestive Physiology in Ruminants, pp. 199-208. Japan Scientific Societies Press, Tokyo, Japan and S. Karger AG, Basel, Switzerland.
  15. Lee, H. J. and Lee S. C. 2006. National methane inventory relevant to livestock enteric fermentation. J. Anim. Sci. & Technol. (Kor). 45(6):998-999. https://doi.org/10.5187/JAST.2003.45.6.997
  16. McGilliard, M. L., Swisher, J. M. and James, R. E. 1983. Grouping lactating cows by nutritional requirements for feeding. J. Dairy Sci. 66:1084. https://doi.org/10.3168/jds.S0022-0302(83)81905-5
  17. National Institute of Animal Science. 2007. Korean Feeding Standard for Hanwoo. p26-27.
  18. Nock, J. E., Steele, R. L. and Braund, D. G. 1986. Effect of mixed ration nutrient density on milk of cows transferred from high production group. J. Dairy Sci. 68:133.
  19. SAS. 2003. SAS Software for PC. Release 9.1, SAS Institute Inc., Cary, NC, USA.
  20. Sekine, J., Kondo, S., Okubo, M. and Asahida, Y. 1986. Estimation of methane production in 6-week-weaned calves up to 25 weeks of age. Japanese J. of Zootechni. Sci. 57, p.300-304.
  21. Shibata, M., Terada, F., Iwasaki, K., Kurihara, M. and Nishida, T. 1992. Methane production in heifers, sheep and goats consum-ing diets of various hay-concenrtate rations. Anim. Scie. and Technol. 63, p.1221-1227.
  22. Shibata, M., Terada, F., Kurihara, M., Nishida, T. and Iwasaki, K. 1993. Estimation of methane production in ruminants. Anim. Scie and Technol. 64, p.790-796.
  23. Shioya, S., Tanaka, M., Iwama, Y. and Kamiya, M. 2002. Development of nutritional management for controlling methane emissions from ruminants in Southeast Asia. Elsevier Science, Greenhouse Gases and Animal Agriculture, p.191.
  24. Song, Y. H., 2008. Feeding management technology for reducing greenhouse gas emissions. Greenhouse gas reduction plan for the livestock sector Symposium. Institute of animal resources Kangwon national university. p.96.
  25. Um, J. Y. 2010. Effects of TMR feeding level according to the breeding stage on the fattening and reproduction performance in hanwoo. Konkuk University paper of doctor's degree.
  26. Whitman, W. B., Bowen, T. L. and Boone, D. R. 1992. The methanogenic bacteria. In: The Procaryotes. Ed. Truper, H. G. et al. Springer-Verlag, New York.

Cited by

  1. Emission by Hanwoo Cow vol.54, pp.5, 2012, https://doi.org/10.5187/JAST.2012.54.5.363
  2. Effects of Dietary Allium fistulosum L. and Tannic Acid on in vitro Ruminal Fermentation Characteristics and Methane Emission vol.26, pp.4, 2018, https://doi.org/10.11625/KJOA.2018.26.4.775