DOI QR코드

DOI QR Code

Analysis of adsorption behavior of lead ion on to surface modified AlPO4 materials

표면처리된 AlPO4에 대한 납 이온의 흡착 거동 분석

  • Kim, Young-Ho (Department of Chemistry, College of Natural Sciences, Kongju National University) ;
  • Kil, Hyun-Suk (Department of Chemistry, College of Natural Sciences, Kongju National University) ;
  • Kang, Kwang-Cheol (Microfilter Co., Ltd.) ;
  • Choi, Suk-Nam (Department of Chemistry, College of Natural Sciences, Kongju National University) ;
  • Rhee, Seog-Woo (Department of Chemistry, College of Natural Sciences, Kongju National University)
  • Received : 2011.03.24
  • Accepted : 2011.06.28
  • Published : 2011.08.25

Abstract

$AlPO_4$-type material was synthesized by a reaction of $Al(OH)_3$ and H3PO4 with organic templates from wastewater of detergent manufacturer. The surface of material was coated with carboxylate groups by the reaction of succinic anhydride with surface amino groups which were formed by treatment of the material with APTMS. Powder XRD patterns showed the characteristic patterns of $AlPO_4$. Morphology of the material was examined using a SEM and the functional groups were investigated by FT-IR analysis. The surface charge of a aqueous suspension was analyzed: $AlPO_4-NH_2$ has positively charged surface while $AlPO_4$-COOH has negatively charged one. They were used for the removal of toxic metals from aqueous solution. The lead ions were adsorbed on the surface by the formation of complexes with carboxylate of surface and $K_d$ was 91.1 mL/g. In conclusion, the $AlPO_4$-COOH might be applicable in the removal of toxic metal ions from aqueous system.

세제 제조시설 폐수의 유기물을 틀로 하여 $Al(OH)_3$$H_3PO_4$의 반응으로 $AlPO_4$-계 물질을 합성하였다. 소성된 $AlPO_4$-계 물질을 APTMS, 석신산 무수물과 반응시켜 표면을 카르복실기로 바꾸었다. 분말 XRD 결과, 특징적인 $AlPO_4$-계 물질의 패턴을 얻었으며, 물질의 형태는 SEM으로 조사하였고, 작용기는 FT-IR 분석으로 확인하였다. 증류수에 분산시킨 고체의 표면 전위 측정 결과, $AlPO_4-NH_2$는 양의 표면 전하를 갖는 반면, $AlPO_4$-COOH는 음의 표면 전하를 갖는 것으로 나타났다. 합성된 $AlPO_4$-계 물질을 이용하여 수용액에서 유해 중금속의 제거 실험을 수행하였다. 납 이온은 표면에 존재하는 카르복실기와 착물을 형성하며 물질에 흡착되었고, 흡착 분배계수는 91.1 mL/g이었다. 결론적으로 본 연구에서 고찰한 $AlPO_4$-계 물질은 수환경에서 유해 중금속 이온의 제거에 활용될 수 있을 것이다.

Keywords

References

  1. National Institute of Environmental Research, 2006.
  2. S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Flanigen, J. Am. Chem. Soc., 104(4), 1146-1147 (1982). https://doi.org/10.1021/ja00368a062
  3. Y. Wan, C. D. Williams, J. J. Cox and C. V. A. Duke, Green Chem., 1(3), 169-171 (1999). https://doi.org/10.1039/a901382b
  4. M. E. Davis and R. F. Lobo, Chem. Mater., 4(4), 756-768 (1992). https://doi.org/10.1021/cm00022a005
  5. I. Braun, G. Schulz-Ekloff, D. Wohrle and W. Lautenschlager, Micropor., Mesopor. Mat., 23(1-2), 79-81 (1998). https://doi.org/10.1016/S1387-1811(98)00180-2
  6. T. Kodaira, K. Miyazawa, T. Ikeda and Y. Kiyozumi, Micropor. Mesopor. Mat., 29(3), 329-337 (1999). https://doi.org/10.1016/S1387-1811(99)00002-5
  7. J. H. Park, S. H. Park and S. H. Jhung, J. Kor. Chem. Soc., 53(5), 553-559 (2009). https://doi.org/10.5012/jkcs.2009.53.5.553
  8. B. V. S. Kumar, K. Byrappa, K. M. L. Rai, M. K. Devaraju, M. S. V. Kumar and C. Ranganathaiah, Ind. J. Chem., 46A(1), 86-90 (2007).
  9. A. Ulman, Chem. Rev., 96(4), 1533-1554 (1996). https://doi.org/10.1021/cr9502357
  10. N. L. Jeon, K. Finnie, K. Branshaw and R. G. Nuzzo, Langmuir, 13(13), 3382-3391 (1997). https://doi.org/10.1021/la970166m
  11. A. Suwalski, H. Dabboue, A. Delalande, S. F. Bensamoun, F. Canon, P. Midoux, G. Saillant, D. Klatzmann, J.-P. Salvetat and C. Pichon, Biomaterials, 31(19), 5237-5245 (2010). https://doi.org/10.1016/j.biomaterials.2010.02.077
  12. Y. An, M. Chen, Q. Xue and W. Liu, J. Colloid Interface Sci., 311(2), 507-513 (2007). https://doi.org/10.1016/j.jcis.2007.02.084
  13. J. M. Cervantes-Uc, J. V. Cauich-Rodriguez, H. Vazquez-Torres, L. F. Garfias-Mesias and D. R. Paul, Thermochim. Acta, 457(1-2), 92-102 (2007). https://doi.org/10.1016/j.tca.2007.03.008
  14. N. Huang and J. Wang, J. Anal. Appl. Pyrolysis, 84(2), 124-130 (2009). https://doi.org/10.1016/j.jaap.2009.01.001
  15. J. M. Hwu, G. J. Jiang, Z. M. Gao, W. Xie, and W. P. Pan, J. Appl. Polym. Sci., 83(8), 1702-1710 (2002). https://doi.org/10.1002/app.10093
  16. H. Ren and F. Xin, Catal. Commun., 7(11), 848-854 (2006). https://doi.org/10.1016/j.catcom.2006.03.010
  17. D. Chakrabortty, J. N. Ganguli and C. V. V. Satyanarayana, Micropor. Mesopor. Mat., 137(1-3), 65-71 (2011). https://doi.org/10.1016/j.micromeso.2010.08.022
  18. D. L. Pavia, G. M. Lampman, G. S. Kriz and J. R. Vyvyan, "Introduction to Spectroscopy", 4th Ed., pp. 15-86, Brooks/Cole, Cengage Learning, Belmont, U.S.A., 2009.
  19. W. Mekky and P. S. Nicholson, J. Mater. Proc. Technol., 190(1-3), 393-396 (2007). https://doi.org/10.1016/j.jmatprotec.2007.03.110
  20. Y. Ma, N. Li and S. Xiang, Micropor. Mesopor. Mat., 86(1-3), 329-334 (2005). https://doi.org/10.1016/j.micromeso.2005.08.001
  21. N. Venkatathri, Mater. Lett., 58(1-2), 241-244 (2003).
  22. E.-P. Ng, L. Delmotte and S. Mintova, Green Chem., 10(10), 1043-1048 (2008). https://doi.org/10.1039/b806525j
  23. D. A. Kron, B. T. Holland, R. Wipson, C. Maleke and A. Stein, Langmuir, 15(23), 8300-8308 (1999). https://doi.org/10.1021/la990553r
  24. B. Parlitz, U. Lohse and E. Schreier, Micropor. Mater., 2(3), 223-228 (1994). https://doi.org/10.1016/0927-6513(93)E0054-K
  25. M. I. Goller, C. Barthet, G. P. McCarthy, R. Corradi, B. P. Newby, S. A. Wilson, S. P. Armes and S. Y. Luk, Colloid. Polym. Sci., 276(11), 1010-1018 (1998). https://doi.org/10.1007/s003960050340
  26. T. U. Aualiitia and W. E. Pickering, Talanta, 34(2), 231-237 (1987). https://doi.org/10.1016/0039-9140(87)80204-7
  27. A. Chadlia, K. Mohamed, L. Najah and M. M. Farouk, J. Hazard. Mater., 172(2-3), 1579-1590 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.030
  28. O. Karnitz Jr., L. V. A. Gurgel, J. C. Perin de Melo, V. R. Botaro, T. M. S. Melo, R. P. F. Gi and L. F. Gil, Biores. Technol., 98(6), 1291-1297 (2007). https://doi.org/10.1016/j.biortech.2006.05.013