DOI QR코드

DOI QR Code

The electrochemical characteristics of EDLC with various activated carbons

다양한 활성탄 종류에 따른 EDLC 전기화학적 특성

  • Yoon, Hong-Jin (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.) ;
  • Lee, Chang-Ho (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.) ;
  • Lee, Jong-Dae (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.)
  • 윤홍진 (충북대학교 화학공학과, 충북대학교 산업과학기술연구소) ;
  • 이창호 (충북대학교 화학공학과, 충북대학교 산업과학기술연구소) ;
  • 이종대 (충북대학교 화학공학과, 충북대학교 산업과학기술연구소)
  • Received : 2011.05.20
  • Accepted : 2011.06.01
  • Published : 2011.06.30

Abstract

The electrochemical characteristics of electric double layer capacitor(EDLC) were investigated using various carbon materials. The physical properties such as specific surface area and mean pore size of activated carbon were analyzed by BET. The results of the activated carbon used for electrode material showed that the specific surface areas varied from 600 to 1500 $m^2$/g and mean pore sizes from 1.74 to 2.88 nm. A maximum specific capacitance of 0.30 F/$cm^2$ was obtained for the activated carbon with the highest specific surface area and ionic conductivity. Also, it was found that the electrochemical results of the cyclic charge-discharge tests were stable.

Keywords

References

  1. B. E. Conway, "Electochemical Superconducts: sientific fundmentals and technological appliaction", Kluwer Academic, New York(1999).
  2. T. Aida, I. Murayama, K. Yamada, and M. Morita, Analyses of capacity loss and improvement of cycle performance for a high-voltage hybrid electrochemical capacitor, J. Electrochem. Soc., 154, 798-804 (2007).
  3. T. Osaka, and M. Datta, "Energy storage systems for electronics", Gorden and Breach Science Publishers, New York(2000).
  4. E. Frackowiak, and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  5. A. Soffer, G. Salitra, L. Eliad, Y. Cohen, and D. Aurbach, Carbon Electrodes for Double-Layer Capacitors I Relations Between Ion and Pore Dimensions, J. Electrochem. Soc., 147, 2486 (2000). https://doi.org/10.1149/1.1393557
  6. S. R. S. Prabaharan, R. Vimala, and Z. Zainal, Nanostructured mesoporous carbon as electrodes for supercapacitors, J. Power sources., 161, 730 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.074
  7. S. Mitani, S. I. Lee, K. saito, Y. Korai, and I. Mochida, Contrast structure and EDLC performances of activated spherical carbons with medium and large surface areas, Electrochimica Acta, 51, 5487 (2006). https://doi.org/10.1016/j.electacta.2006.02.040
  8. B. E. Conway, "Electrochemical Supercapacitors", Kluwer Academic and Plenum Publishers, NewYork (1990).
  9. I. Tanahashi, A. Yoshida, and A. Nishino, Electrochemical Characterization of Activated Carbon-Fiber Cloth Polarizable Electrodes for Electric Double-Layer Capacitors, J. Electrochem, Soc., 137, 3052 (1990). https://doi.org/10.1149/1.2086158
  10. I. Tanahashi, A. Yoshida, and A. Nishino, Activated carbon fiber sheets as polarizable electrodes of electric double layer capacitors, Carbon, 28, 477 (1990). https://doi.org/10.1016/0008-6223(90)90041-V
  11. O. Barbieri, M. Hahn, A. Herzog, and R. Kotz, Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 43, 1303 (2005). https://doi.org/10.1016/j.carbon.2005.01.001
  12. A. Alonso, V. Ruiz, C. Blanco, R. Santamaria, M. Granda, R. Menendez, and S. G. E. de Jager, Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors, Carbon, 44, 441 (2006). https://doi.org/10.1016/j.carbon.2005.09.008
  13. T. Kyotani, Control of pore structure in carbon, Carbon, 38, 269 (2000). https://doi.org/10.1016/S0008-6223(99)00142-6
  14. C. Y. Kang, M. G. Kang, and J. D. Lee, Preparation of mesoporous carbon using ion exchange, J. Kor. Oil Chem. Soc., 26, 328-334 (2009).
  15. H. Tamon, H. Ishizaka, T. Araki, and M. Okazaki, Control of mesoporous structure of organic and carbon aerogels, Carbon, 36, 1257-1262 (1998). https://doi.org/10.1016/S0008-6223(97)00202-9
  16. C. Y. Kang, Y. S. Sin, and J. D. Lee, The electrochemical characteristics of mesopore carbon fiber for EDLC electrode, korean chem. Eng. Res., 49, 10-14 (2011). https://doi.org/10.9713/kcer.2011.49.1.010
  17. G. Gryglewicz, J. Machnilkowski, E. Lprenc-Grabowska, G. Lota, and E. Frackowiak, Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochimica Acta, 50, 1197 (2005). https://doi.org/10.1016/j.electacta.2004.07.045
  18. H. Y. Liu, K. P. Wang, and H. Teng, A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation, Carbon, 43, 559 (2005). https://doi.org/10.1016/j.carbon.2004.10.020
  19. K. P. Wang, and H, Teng, The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin, Carbon, 44, 3218 (2006). https://doi.org/10.1016/j.carbon.2006.06.031
  20. M. S. Lee, Y. S. Sing, and J. D. Lee, Effect of pore structure on electrochemical performance of EDLC, J. Kor. Oil Chem. Soc., 27, 310-317 (2011).