DOI QR코드

DOI QR Code

Development of Protein Drugs by PEGylation Technology

PEGylation 기술을 이용한 단백질 의약품 개발

  • Received : 2011.07.16
  • Accepted : 2011.08.03
  • Published : 2011.08.30

Abstract

PEGylation, the attachment of polyethylene glycol (PEG) to proteins, is currently main technology for improving efficacy of protein drugs. This technology can prolong the plasma half-life, augment the in vivo stability, and diminish the immunogenicity of therapeutic proteins. Therefore, PEGylated proteins have the enhanced therapeutic efficacy and the reduced undesirable effects versus their native therapeutics. Since the first PEGylated protein product appeared on the market in the early 1990s, currently ten PEGylated protein products have been launched. These marketed drug products have proved the applicability and safety of the PEGylation technology. This review presents overview of PEGylation technology and addresses characteristics of PEGylation methods applied for the development of several protein drugs.

Keywords

Acknowledgement

Supported by : 경성대학교

References

  1. Lawrence, S. (2007) Billion dollar babies-biotech drugs as blockbusters. Nature Biotech. 25: 380-382. https://doi.org/10.1038/nbt0407-380
  2. Abuchowski, A., J. R. McCoy, N. C. Palczuk, T. van Es, and F. F. Davis (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252: 3582-3586.
  3. Abuchowski, A., T. van Es, N. C. Palczuk, and F. F. Davis (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 252: 3578-3581.
  4. Veronese, F. M. and A. Mero (2008) The impact of PEGylation on biological therapies. BioDrugs 22: 315-329. https://doi.org/10.2165/00063030-200822050-00004
  5. Kang, J. S., P. P. Deluca, and K. C. Lee (2009) Emerging PEGylated drugs. Expert Opin. Emerg. Drugs 14: 363-380. https://doi.org/10.1517/14728210902907847
  6. Gaberc-Porekar, V., I. Zore, B. Podobnik, and V. Menart (2008) Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr. Opin. Drug Discov. Devel. 11: 242-250.
  7. Filpula, D. and H. Zhao (2008) Releasable PEGylation of proteins with customized linkers. Adv. Drug Deliv. Rev. 60: 29-49. https://doi.org/10.1016/j.addr.2007.02.001
  8. Mero, A., B. Spolaore, F. M. Veronese, and A. Fontana (2009) Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug. Chem. 20: 384-389. https://doi.org/10.1021/bc800427n
  9. Herold, D. A., K. Keil, and D. E. Bruns (1989) Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem. Pharmacol. 38: 73-76. https://doi.org/10.1016/0006-2952(89)90151-2
  10. Richter, A. W. and E. Akerblom (1983) Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethylene glycol modified proteins. Int. Arch. Allergy Appl. Immunol. 70: 124-131. https://doi.org/10.1159/000233309
  11. Richter, A. W. and E. Akerblom (1984) Polyethylene glycol reactive antibodies in man: titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo, and in healthy blood donors. Int. Arch. Allergy Appl. Immunol. 74: 36-39. https://doi.org/10.1159/000233512
  12. Yamaoka, T., Y. Tabata, and Y.Ikada (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 83: 601-606. https://doi.org/10.1002/jps.2600830432
  13. Caliceti, P. and F. M. Veronese (2003) Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 55: 1261-1277. https://doi.org/10.1016/S0169-409X(03)00108-X
  14. Park, E. J. and D. H. Na (2008) Optimization of octreotide PEGylation by monitoring with fast reversed-phase highperformance liquid chromatography. Anal. Biochem. 380: 140-142. https://doi.org/10.1016/j.ab.2008.05.035
  15. Lee, K. S. and D. H. Na (2010) Capillary electrophoretic separation of poly(ethylene glycol)-modified granulocyte-colony stimulating factor. Arch. Pharm. Res. 33: 491-495. https://doi.org/10.1007/s12272-010-0320-4
  16. Park, E. J., K. S. Lee, K. C. Lee, and D. H. Na (2010) Application of microchip CGE for the analysis of PEG-modified recombinant human granulocyte-colony stimulating factors. Electrophoresis 31: 3771-3774. https://doi.org/10.1002/elps.201000302
  17. Kinstler, O. B., D. N. Brems, S. L. Lauren, A. G. Paige, J. B. Hamburger, and M. J. Treuheit (1996) Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm. Res. 13: 996-1002. https://doi.org/10.1023/A:1016042220817
  18. Kinstler, O., G. Molineux, M. Treuheit, D. Ladd, and C. Gegg (2002) Mono-N-terminal poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 54: 477-485. https://doi.org/10.1016/S0169-409X(02)00023-6
  19. Roberts, M. J., M. D. Bentley, and J. M. Harris (2002) Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54: 459-476. https://doi.org/10.1016/S0169-409X(02)00022-4
  20. Na, D. H., Y. S. Youn, and K. C. Lee (2004) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for monitoring and optimization of site-specific PEGylation of ricin A-chain. Rapid Commun. Mass Spectrom. 18: 2185-2189. https://doi.org/10.1002/rcm.1599
  21. Pepinsky, R. B., R. I. Shapiro, S. Wang, A. Chakraborty, A. Gill, D. J. Lepage, D. Wen, P. Rayhorn, G. S. Horan, F. R. Taylor, E. A. Garber, A. Galdes, and T. M. Engber (2002) Long-acting forms of Sonic hedgehog with improved pharmacokinetic and pharmacodynamic properties are efficacious in a nerve injury model. J. Pharm. Sci. 91: 371-387. https://doi.org/10.1002/jps.10052
  22. Youn, Y. S., D. H. Na, S. D. Yoo, S. C. Song, and K. C. Lee (2005) Carbohydrate-specifically polyethylene glycol-modified ricin A-chain with improved therapeutic potential. Int. J. Biochem. Cell Biol. 37: 1525-1533. https://doi.org/10.1016/j.biocel.2005.01.014
  23. Davis, F. F. (2003) PEG-adenosine deaminase and PEGasparaginase. Adv. Exp. Med. Biol. 519: 51-68.
  24. Chan, B., D. Wara, J. Bastian, M. S. Hershfield, J. Bohnsack, C. G. Azen, R. Parkman, K. Weinberg, and D. B. Kohn (2005) Long-term efficacy of enzyme replacement therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). Clin. Immunol. 117: 133-143. https://doi.org/10.1016/j.clim.2005.07.006
  25. Davis, S., A. Abuchowski, Y. K. Park, and F. F. Davis (1981) Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment ofpolyethylene glycol. Clin. Exp. Immunol. 46: 649-652.
  26. Graham, M. L. (2003) Pegaspargase: a review of clinical studies. Adv. Drug Deliv. Rev. 55: 1293-1302. https://doi.org/10.1016/S0169-409X(03)00110-8
  27. Kamisaki, Y., H. Wada, T. Yagura, A. Matsushima, and Y. Inada (1981) Reduction in immunogenicity and clearance rate of Escherichia coli L-asparaginase by modification with monomethoxypolyethylene glycol. J. Pharmacol. Exp. Ther. 216: 410-414.
  28. Ho, D. H., N. S. Brown, A. Yen, R. Holmes, M. Keating, A. Abuchowski, R. A. Newman, and I. H. Krakoff (1986) Clinical pharmacology of polyethylene glycol-L-asparaginase. Drug Metab. Dispos. 14: 349-352.
  29. Wylie, D. C., M. Voloch, S. Lee, Y. H. Liu, S. Cannon-Carlson, C. Cutler, and B. Pramanik (2001) Carboxyalkylated histidine is a pH-dependent product of pegylation with SC-PEG. Pharm. Res. 18: 1354-1360. https://doi.org/10.1023/A:1013006515587
  30. Wang, Y. S., S. Youngster, J. Bausch, R. Zhang, C. McNemar, and D. F. Wyss (2000) Identification of the major positional isomer of pegylated interferon alpha-2b. Biochemistry 39: 10634-10640. https://doi.org/10.1021/bi000617t
  31. Wang, Y. S., S. Youngster, M. Grace, J. Bausch, R. Bordens, and D. F. Wyss (2002) Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Deliv. Rev. 54:547-570. https://doi.org/10.1016/S0169-409X(02)00027-3
  32. Glue, P., J. W. Fang, R. Rouzier-Panis, C. Raffanel, R. Sabo, S. K. Gupta, M. Salfi, and S. Jacobs (2000) Pegylated interferonalpha2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Clin. Pharmacol. Ther. 68: 556-567. https://doi.org/10.1067/mcp.2000.110973
  33. Rajender Reddy, K., M. W. Modi, and S. Pedder (2002) Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Deliv. Rev. 54: 571-586. https://doi.org/10.1016/S0169-409X(02)00028-5
  34. Bailon, P., A. Palleroni, C. A. Schaffer, C. L. Spence, W. J. Fung, J. E. Porter, G. K. Ehrlich, W. Pan, Z. X. Xu, M. W. Modi, A. Farid, W. Berthold, and M. Graves (2001) Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug. Chem. 12: 195-202. https://doi.org/10.1021/bc000082g
  35. Monkarsh, S. P., Y. Ma, A. Aglione, P. Bailon, D. Ciolek, B. DeBarbieri, M. C. Graves, K. Hollfelder, H. Michel, A. Palleroni, J. E. Porter, E. Russoman, S. Roy, and Y. C. Pan (1997) Positional isomers of monopegylated interferon alpha-2a: isolation, characterization, and biological activity. Anal. Biochem. 247: 434-440. https://doi.org/10.1006/abio.1997.2128
  36. Zeuzem, S., J. E. Heathcote, N. Martin, K. Nieforth, and M. Modi (2001) Peginterferon alfa-2a (40 kDa) monotherapy: a novel agent for chronic hepatitis C therapy. Expert Opin. Investig. Drugs 10: 2201-2213. https://doi.org/10.1517/13543784.10.12.2201
  37. Molineux, G. (2003) Pegfilgrastim: using pegylation technology to improve neutropenia support in cancer patients. Anticancer Drugs 14: 259-264. https://doi.org/10.1097/00001813-200304000-00002
  38. Yang (2006) Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J. Clin. Pharmacol. 46: 747-757. https://doi.org/10.1177/0091270006288731
  39. Fuh, G., B. C. Cunningham, R. Fukunaga, S. Nagata, D. V. Goeddel, and J. A. Wells (1992) Rational design of potent antagonists to the human growth hormone receptor. Science 256: 1677-1680. https://doi.org/10.1126/science.256.5064.1677
  40. Pradhananga, S., I. Wilkinson, and R. J. Ross (2002) Pegvisomant: structure and function. J. Mol. Endocrinol. 29: 11-14. https://doi.org/10.1677/jme.0.0290011
  41. Roelfsema, F., N. R. Biermasz, A. M. Pereira, and J. Romijn (2006) Nanomedicines in the treatment of acromegaly: focus on pegvisomant. Int. J. Nanomedicine 1: 385-398. https://doi.org/10.2147/nano.2006.1.4.385
  42. Roelfsema, F., N. R. Biermasz, A. M. Pereira, and J. A. Romijn (2008) The role of pegvisomant in the treatment of acromegaly. Expert Opin. Biol. Ther. 8: 691-704. https://doi.org/10.1517/14712598.8.5.691
  43. Barnes, T. and R. Moots (2007) Targeting nanomedicines in the treatment of rheumatoid arthritis: focus on certolizumab pegol. Int. J. Nanomedicine 2:3-7. https://doi.org/10.2147/nano.2007.2.1.3
  44. Lu, Y., S. E. Harding, A. Turner, B. Smith, D. S. Athwal, J. G. Grossmann, K. G. Davis, and A. J. Rowe (2008) Effect of PEGylation on the solution conformation of antibody fragments. J. Pharm. Sci. 97: 2062-2079 https://doi.org/10.1002/jps.21170
  45. Choy, E. H., B. Hazleman, M. Smith, K. Moss, L. Lisi, D. G. Scott, J. Patel, M. Sopwith, and D. A. Isenberg (2002) Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II doubleblinded, randomized, dose-escalating trial. Rheumatology 41: 1133-1137. https://doi.org/10.1093/rheumatology/41.10.1133

Cited by

  1. Differences in electrophoretic behavior between linear and branched PEG-conjugated proteins vol.36, pp.6, 2015, https://doi.org/10.1002/elps.201400539