DOI QR코드

DOI QR Code

Effect of Strain Rate and Material Hardness on Residual Stress in Multiple Impact Shot Peening

다중충돌 쇼트피닝에서 변형률 속도와 소재 경도가 잔류응력에 미치는 영향에 관한 연구

  • Received : 2010.12.14
  • Accepted : 2011.08.11
  • Published : 2011.11.01

Abstract

Shot ball impacts to materials cause residual compressive stress on their surfaces. Improving the fatigue strength of a material that has this residual compress stress is the purpose of the shot peening process. A numerical study was performed to evaluate the effect of the strain rate sensitivity and hardness of the shot ball on the residual compressive stress. We calculated the residual compressive stress due to multiple impact shot peening using ABAQUS 6.9-1. AISI 4340 steel was the material used in this study. We compared the effects of high strain rate sensitivities and low strain rate sensitivities and found that when the material's sensitivity to the strain rate increased, the residual compressive stress decreased. In addition, the residual compressive stress of low-hardness material is higher than that of high-hardness material.

쇼트피닝 공정은 쇼트볼이 소재에 충돌을 일으킬 때 생기는 압축잔류응력에 의해 소재의 피로 강도를 향상 시키는데 그 목적이 있다. 본 연구는 변형률 속도 민감도 변화가 압축잔류응력에 미치는 영향을 분석하기 위해서 수행되었다. 본 연구자는 변형률 속도 민감도의 영향을 고려한 쇼트피닝 다중 충돌을 ABAQUS 6.9-1 를 사용하여 모사하였다. 사용된 소재는 AISI 4340 강종이다. 본 연구자는 변형률 속도 민감성이 높은 재료와 낮은 재료를 비교하였다. 결과적으로 변형률 속도 민감성이 증가하면 압축 잔류응력은 감소하였다. 또한 경도가 낮은 소재의 압축잔류응력이 경도가 높은 소재보다 더 크게 발생 하였다.

Keywords

References

  1. Park, K.-D. and Jin, Y.-B., 2004, "The Effect of Compressive Residual Stress on Fatigue Fracture of the Spring steel," Trans. of the KSME,, Vol. 3, No. 3, pp. 79-85.
  2. Menig, R., Pintschovius, L., Schulze, V. and Vöhringer, O., 2001, "Depth Profiles of Macro Residual Stress in Thin Shot Peened Plates Determined by X-ray and Neutron Diffraction," Scr. Mater., Vol. 45, pp. 977-983. https://doi.org/10.1016/S1359-6462(01)01063-6
  3. Wick., A., Schulze, V. and Vohringer, O., 2000, "Effects of Warm Peening on Fatigue Life and Relaxation Behavior of Residual Stresses in AISI 4140 Steel," Mater. Sci. Eng., A., Vol. 293, pp. 191-197. https://doi.org/10.1016/S0921-5093(00)01035-2
  4. Meo, M., and Vignjevic, R., 2003, "Finite Element Analysis of Residual Stress Induced by Shot Peening Process," Adv. Eng. Softw., Vol. 34, pp. 569-575. https://doi.org/10.1016/S0965-9978(03)00063-2
  5. Barrios, D. B., Angelo, E. and Goncalves, E., 2005, "Finite Element Shot Peening Simulation for Residual Stress. Analysis and Comparison with Experimental Results," Mech. Computational., Vol. 14, pp. 113-121.
  6. Schiffner, K., Drostegen, C. and Helling, 1999, "Simulation of Residual Stresses by Shot Peening," Comput. Struct., Vol. 72, pp. 329-340. https://doi.org/10.1016/S0045-7949(99)00012-7
  7. Bhuvaraghan, B., Srinivasan, S. M., Maffeo, B. and Prakash, O., 2010, "Analytical Solution for Single and Multiple Impacts with Strain-rate Effects for Shot Peening," CMES, Vol. 1550, No.1, pp.1-22.
  8. Guaglliano, M., 2001, "Relating Almen Intensity to Residual Stresses Induced by Shot Peening: Anumerical Approach," J. Mater. Process. Technol., Vol. 110, pp. 277-286. https://doi.org/10.1016/S0924-0136(00)00893-1
  9. Meguid, S.A., Shagal, G. and Stranart, J.C., 2002, "3D FE Analysis of Peening of Strain-Rate Sensitive Materials Using Multiple Impingement Model," Int. J. Impact Eng., Vol. 27, pp.119-134. https://doi.org/10.1016/S0734-743X(01)00043-4
  10. Meguid, S.A., Shagal, G., Stranart, J.C. and Daly, J., 1999. "Three-Dimensional Dynamic Finite Element Analysis of Shot-Pening Induced Residual Stresses," Finite Elem. Anal. Des., Vol. 31, pp.179-191. https://doi.org/10.1016/S0168-874X(98)00057-2
  11. Meguid, S.A., Shagal, G. and Stranart, J.C., 1999, "Finite Element Modeling of Shot-Peening Residual Stresses," J. Mater. Process. Technol., Vol. 92-93, pp. 401-404.
  12. Kim, T., Lee, J. H., Lee, H. and Cheong, S.-k., 2010, "An Area-Average Approach to Peening Residual Stress Under Multi-Impacts Using a Three- Dimensional Symmetry-Cell Finite Element Model with Plastic Shots," Mater. Des., Vol. 31, pp. 50-59. https://doi.org/10.1016/j.matdes.2009.07.032
  13. Kim, T., Lee, W.-B., Oh, Y. T. and Lee, Y., 2009,"The Effect of Shot Peening Cycle on Residual Stress Distribution," Proc. Kor. Soc. Tech. Plast. Conf,, pp. 52-56.
  14. Kim, T. and Lee, H., 2008, "A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impact," Trans. Kor. Soc. Mech. Eng.,Vol. 32, No. 8, pp. 642-653. https://doi.org/10.3795/KSME-A.2008.32.8.642
  15. Premack, T. and Douglas, A. S., 1995, "Three- Dimensional Analysis of The Impact Fracture of 4340 Steel," Int. J. Solids Struct, Vol. 32, No. 17-18, pp. 2793-2812. https://doi.org/10.1016/0020-7683(94)00295-8
  16. Wall, O., 2002, "Numerical Modeling of Fracture Initiation in Large Steel Specimens at Impact," Eng. Fract. Mech., Vol. 69, pp. 851-863. https://doi.org/10.1016/S0013-7944(01)00112-6

Cited by

  1. Effects of Shot Peening Projection Pressure on Electrochemical Characteristics of ALBC3 Alloy in Seawater vol.47, pp.1, 2014, https://doi.org/10.5695/JKISE.2014.47.1.025